Mostrar el registro sencillo del ítem

dc.contributor.authorCorreia, J.
dc.contributor.authorRodriguez Fernández, Nereida
dc.contributor.authorVieira, L.
dc.contributor.authorRomero Cardalda, Juan Jesús
dc.contributor.authorMachado, P.
dc.date.accessioned2025-05-14T17:06:52Z
dc.date.available2025-05-14T17:06:52Z
dc.date.issued2022
dc.identifier.issn2076-3417
dc.identifier.urihttp://hdl.handle.net/20.500.11940/20002
dc.description.abstract[EN] Image Enhancement (IE) is an image processing procedure in which the image’s original information is improved, highlighting specific features to ease post-processing analyses by a human or machine. State-of-the-art image enhancement pipelines apply solutions to fixed and static constraints to solve specific issues in isolation. In this work, an IE system for image marketing is proposed, more precisely, real estate marketing, where the objective is to enhance the commercial appeal of the images, while maintaining a level of realism and similarity with the original image. This work proposes a generic image enhancement pipeline that combines state-of-the-art image processing filters, Machine Learning methods, and Evolutionary approaches, such as Genetic Programming (GP), to create a dynamic framework for Image Enhancement. The GP-based system is trained to optimize 4 metrics: Neural Image Assessment (NIMA) technical and BRISQUE, which evaluate the technical quality of the images; and NIMA aesthetics and PhotoILike, that evaluate the commercial attractiveness. It is shown that the GP model was able to find the best image quality enhancement (0.97 NIMA Aesthetics), while maintaining a high level of similarity with the original images (Structural Similarity Index Measure (SSIM) of 0.88). The framework has better performance according to the image quality metrics than the off-the-shelf image enhancement tool and the framework’s isolated parts.
dc.language.isoenes
dc.rightsAtribución 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleTowards Automatic Image Enhancement with Genetic Programming and Machine Learning
dc.typeJournal Articlees
dcterms.bibliographicCitationCorreia J, Rodriguez-Fernandez N, Vieira L, Romero J, Machado P. Towards Automatic Image Enhancement with Genetic Programming and Machine Learning. Applied Sciences (Switzerland). 2022;12(4).
dc.authorsophosCorreia, P. J.;Rodriguez-Fernandez, N.;Vieira, L.;Romero, J.;Machado
dc.identifier.doi10.3390/APP12042212
dc.identifier.sophos622d644e8ab9f76b4512f7c0
dc.issue.number4
dc.journal.titleApplied Sciences (Switzerland)
dc.relation.publisherversionhttps://www.mdpi.com/2076-3417/12/4/2212/pdf?version=1645430695;https://mdpi-res.com/d_attachment/applsci/applsci-12-02212/article_deploy/applsci-12-02212-v2.pdf?version=1645430695es
dc.rights.accessRightsopenAccess
dc.subject.keywordINIBICes
dc.volume.number12


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional