Mostrar el registro sencillo del ítem

dc.contributor.authorJuan-Salvadores, P.
dc.contributor.authorVeiga Garcia, Cesar
dc.contributor.authorDíaz, V.A.J.
dc.contributor.authorGonzález, A.G.
dc.contributor.authorCarreño, C.I.
dc.contributor.authorReglero, C.M.
dc.contributor.authorAlonso, J.A.B.
dc.contributor.authorCaamaño Isorna, Francisco
dc.contributor.authorRomo, A.I.
dc.date.accessioned2025-05-16T08:46:34Z
dc.date.available2025-05-16T08:46:34Z
dc.date.issued2022
dc.identifier.issn2075-4418
dc.identifier.urihttp://hdl.handle.net/20.500.11940/20060
dc.description.abstract[EN] Coronary artery disease is a chronic disease with an increased expression in the elderly. However, different studies have shown an increased incidence in young subjects over the last decades. The prediction of major adverse cardiac events (MACE) in very young patients has a significant impact on medical decision-making following coronary angiography and the selection of treatment. Different approaches have been developed to identify patients at a higher risk of adverse outcomes after their coronary anatomy is known. This is a prognostic study of combined data from patients ≤40 years old undergoing coronary angiography (n = 492). We evaluated whether different machine learning (ML) approaches could predict MACE more effectively than traditional statistical methods using logistic regression (LR). Our most effective model for long-term follow-up (60 ± 27 months) was random forest (RF), obtaining an area under the curve (AUC) = 0.79 (95%CI 0.69–0.88), in contrast with LR, obtaining AUC = 0.66 (95%CI 0.53–0.78, p = 0.021). At 1-year follow-up, the RF test found AUC 0.80 (95%CI 0.71–0.89) vs. LR 0.50 (95%CI 0.33–0.66, p < 0.001). The results of our study support the hypothesis that ML methods can improve both the identification of MACE risk patients and the prediction vs. traditional statistical techniques even in a small sample size. The application of ML techniques to focus the efforts on the detection of MACE in very young patients after coronary angiography could help tailor upfront follow-up strategies in such young patients according to their risk of MACE and to be used for proper assignment of health resources.
dc.language.isoenes
dc.rightsAtribución 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleUsing Machine Learning Techniques to Predict MACE in Very Young Acute Coronary Syndrome Patients
dc.typeJournal Articlees
dcterms.bibliographicCitationJuan-Salvadores P, Veiga C, Díaz VAJ, González AG, Carreño CI, Reglero CM, et al. Using Machine Learning Techniques to Predict MACE in Very Young Acute Coronary Syndrome Patients. Diagnostics. 2022;12(2).
dc.authorsophosJuan-Salvadores, A. I. P.;Veiga, C.;Díaz, V. A. J.;González, A. G.;Carreño, C. I.;Reglero, C. M.;Alonso, J. A. B.;Isorna, F. C.;Romo
dc.identifier.doi10.3390/DIAGNOSTICS12020422
dc.identifier.sophos625b64ae87b2c969dff1395f
dc.issue.number2
dc.journal.titleDiagnostics
dc.page.initialnull
dc.relation.publisherversionhttps://www.mdpi.com/2075-4418/12/2/422/pdf?version=1645182946es
dc.rights.accessRightsopenAccess
dc.subject.keywordIISGSes
dc.volume.number12


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional