Mostrar o rexistro simple do ítem

dc.contributor.authorMosquera Orgueira, Adrián
dc.contributor.authorAntelo Rodrí­guez, Beatriz
dc.contributor.authorAlonso Vence, Natalia 
dc.contributor.authorBendaña López, Mª Ángeles
dc.contributor.authorDíaz Arias, José
dc.contributor.authorVarela, N.D.
dc.contributor.authorGonzález Pérez, Marta Sonia
dc.contributor.authorPérez Encinas, Manuel Mateo
dc.contributor.authorLópez, J.L.B.
dc.date.accessioned2025-08-12T09:23:32Z
dc.date.available2025-08-12T09:23:32Z
dc.date.issued2019
dc.identifier.citationOrgueira AM, Rodrí­guez BA, Vence NA, López A.B, Arias J.A.D, Varela ND, et al. Time to treatment prediction in chronic lymphocytic leukemia based on new transcriptional patterns. Frontiers in Oncology. 2019;9(FEB).
dc.identifier.issn2234-943X
dc.identifier.otherhttps://sergas.portalcientifico.es//documentos/5da974ba29995222b484ee33
dc.identifier.urihttp://hdl.handle.net/20.500.11940/20301
dc.description.abstractChronic lymphocytic leukemia (CLL) is the most frequent lymphoproliferative syndrome in western countries. CLL evolution is frequently indolent, and treatment is mostly reserved for those patients with signs or symptoms of disease progression. In this work, we used RNA sequencing data from the International Cancer Genome Consortium CLL cohort to determine new gene expression patterns that correlate with clinical evolution.We determined that a 290-gene expression signature, in addition to immunoglobulin heavy chain variable region (IGHV) mutation status, stratifies patients into four groups with notably different time to first treatment. This finding was confirmed in an independent cohort. Similarly, we present a machine learning algorithm that predicts the need for treatment within the first 5 years following diagnosis using expression data from 2,198 genes. This predictor achieved 90% precision and 89% accuracy when classifying independent CLL cases. Our findings indicate that CLL progression risk largely correlates with particular transcriptomic patterns and paves the way for the identification of high-risk patients who might benefit from prompt therapy following diagnosis.
dc.language.isoeng
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleTime to treatment prediction in chronic lymphocytic leukemia based on new transcriptional patterns
dc.typeArticle
dc.rights.licenseAtribución 4.0 Internacional*
dc.authorsophosOrgueira, A.M.
dc.authorsophosRodrí­guez, B.A.
dc.authorsophosVence, N.A.
dc.authorsophosLópez, A.B.
dc.authorsophosArias, J.A.D
dc.authorsophosVarela, N.D
dc.authorsophosPérez, M.S.G.
dc.authorsophosEncinas, M.M.P
dc.authorsophosLópez, J.L.B.
dc.identifier.doi10.3389/FONC.2019.00079
dc.identifier.sophos5da974ba29995222b484ee33
dc.issue.numberFEB
dc.journal.titleFrontiers in Oncology
dc.relation.publisherversionhttps://doi.org/10.3389/fonc.2019.00079
dc.rights.accessRightsopenAccess*
dc.subject.keywordAS Santiago AP
dc.subject.keywordCHUS
dc.subject.keywordIDIS
dc.typefidesArtí­culo Cientí­fico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtí­culo Original
dc.volume.number9


Ficheiros no ítem

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem

Atribución 4.0 Internacional
A non ser que se indique outra cousa, a licenza do ítem descríbese comoAtribución 4.0 Internacional