Mostrar el registro sencillo del ítem

dc.contributor.authorMosquera Orgueira, Adrián
dc.contributor.authorPérez Encinas, Manuel Mateo 
dc.contributor.authorDiaz Varela, N.A.
dc.contributor.authorMora, E.
dc.contributor.authorDíaz-Beyá, M.
dc.contributor.authorMontoro, M.J.
dc.contributor.authorPomares, H.
dc.contributor.authorRamos, F.
dc.contributor.authorTormo, M.
dc.contributor.authorJerez, A.
dc.contributor.authorNomdedeu, J.F.
dc.contributor.authorDe Miguel Sanchez, C.
dc.contributor.authorLeonor, A.
dc.contributor.authorCárcel, P.
dc.contributor.authorCedena Romero, M.T.
dc.contributor.authorXicoy, B.
dc.contributor.authorRivero, E.
dc.contributor.authorDel Orbe Barreto, R.A.
dc.contributor.authorDiez-Campelo, M.
dc.contributor.authorBenlloch, L.E.
dc.contributor.authorCrucitti, D.
dc.contributor.authorValcárcel, D.
dc.date.accessioned2025-08-12T11:29:50Z
dc.date.available2025-08-12T11:29:50Z
dc.date.issued2023
dc.identifier.citationMosquera Orgueira A, Perez Encinas MM, Diaz Varela NA, Mora E, Díaz-Beyá M, Montoro MJ, et al. Machine Learning Improves Risk Stratification in Myelodysplastic Neoplasms: An Analysis of the Spanish Group of Myelodysplastic Syndromes. HemaSphere. 2023;7(10):E961.
dc.identifier.issn2572-9241
dc.identifier.otherhttps://sergas.portalcientifico.es//documentos/6546ec4232348009d228d719
dc.identifier.urihttp://hdl.handle.net/20.500.11940/20393
dc.description.abstractMyelodysplastic neoplasms (MDS) are a heterogeneous group of hematological stem cell disorders characterized by dysplasia, cytopenias, and increased risk of acute leukemia. As prognosis differs widely between patients, and treatment options vary from observation to allogeneic stem cell transplantation, accurate and precise disease risk prognostication is critical for decision making. With this aim, we retrieved registry data from MDS patients from 90 Spanish institutions. A total of 7202 patients were included, which were divided into a training (80%) and a test (20%) set. A machine learning technique (random survival forests) was used to model overall survival (OS) and leukemia-free survival (LFS). The optimal model was based on 8 variables (age, gender, hemoglobin, leukocyte count, platelet count, neutrophil percentage, bone marrow blast, and cytogenetic risk group). This model achieved high accuracy in predicting OS (c-indexes; 0.759 and 0.776) and LFS (c-indexes; 0.812 and 0.845). Importantly, the model was superior to the revised International Prognostic Scoring System (IPSS-R) and the age-adjusted IPSS-R. This difference persisted in different age ranges and in all evaluated disease subgroups. Finally, we validated our results in an external cohort, confirming the superiority of the Artificial Intelligence Prognostic Scoring System for MDS (AIPSS-MDS) over the IPSS-R, and achieving a similar performance as the molecular IPSS. In conclusion, the AIPSS-MDS score is a new prognostic model based exclusively on traditional clinical, hematological, and cytogenetic variables. AIPSS-MDS has a high prognostic accuracy in predicting survival in MDS patients, outperforming other well-established risk-scoring systems.en
dc.language.isoeng
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleMachine Learning Improves Risk Stratification in Myelodysplastic Neoplasms: An Analysis of the Spanish Group of Myelodysplastic Syndromes
dc.typeArticle
dc.rights.licenseAtribución 4.0 Internacional*
dc.authorsophosMosquera Orgueira, A.
dc.authorsophosPerez Encinas, M.M.
dc.authorsophosDiaz Varela, N.A.
dc.authorsophosMora, E.
dc.authorsophosDíaz-Beyá, M.
dc.authorsophosMontoro, M.J.
dc.authorsophosPomares, H.
dc.authorsophosRamos, F.
dc.authorsophosTormo, M.
dc.authorsophosJerez, A.
dc.authorsophosNomdedeu, J.F.
dc.authorsophosDe Miguel Sanchez, C.
dc.authorsophosLeonor, A.
dc.authorsophosCárcel, P.
dc.authorsophosCedena Romero, M.T.
dc.authorsophosXicoy, B.
dc.authorsophosRivero, E.
dc.authorsophosDel Orbe Barreto, R.A.
dc.authorsophosDiez-Campelo, M.
dc.authorsophosBenlloch, L.E.
dc.authorsophosCrucitti, D.
dc.authorsophosValcárcel, D.
dc.identifier.doi10.1097/HS9.0000000000000961
dc.identifier.sophos6546ec4232348009d228d719
dc.issue.number10
dc.journal.titleHemaSphereen
dc.page.initialE961
dc.relation.publisherversionhttps://doi.org/10.1097/hs9.0000000000000961
dc.rights.accessRightsopenAccess*
dc.subject.keywordAS Santiago AP
dc.subject.keywordCHUS
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtículo Original
dc.volume.number7


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional