Mostrar el registro sencillo del ítem

dc.contributor.authorCorrea-Paz, C.
dc.contributor.authorNavarro Poupard, M.F.
dc.contributor.authorPolo, E.
dc.contributor.authorRodríguez Pérez, Manuel|Migliavacca, M.
dc.contributor.authorIglesias Rey, Ramón
dc.contributor.authorOuro Villasante, Alberto
dc.contributor.authorMaqueda, E.
dc.contributor.authorHervella Lorenzo, Pablo
dc.contributor.authorSobrino Moreiras, Tomas 
dc.contributor.authorCastillo, J.
dc.contributor.authordel Pino, P.
dc.contributor.authorPelaz, B.
dc.contributor.authorCampos Pérez, Francisco 
dc.date.accessioned2025-08-14T11:50:54Z
dc.date.available2025-08-14T11:50:54Z
dc.date.issued2022
dc.identifier.citationCorrea-Paz C, Navarro Poupard MF, Polo E, Rodríguez-Pérez M, Migliavacca M, Iglesias-Rey R, et al. Sonosensitive capsules for brain thrombolysis increase ischemic damage in a stroke model. Journal of Nanobiotechnology. 2022;20(1).
dc.identifier.issn1477-3155
dc.identifier.otherhttps://portalcientifico.sergas.gal/documentos/61ff065213638e1cfc277607*
dc.identifier.urihttp://hdl.handle.net/20.500.11940/20420
dc.description.abstractBackground: Ischemic stroke is the most common cerebrovascular disease and is caused by interruption of blood supply to the brain. To date, recombinant tissue plasminogen activator (rtPA) has been the main pharmacological treatment in the acute phase. However, this treatment has some drawbacks, such as a short half-life, low reperfusion rate, risk of hemorrhagic transformations, and neurotoxic effects. To overcome the limitations of rtPA and improve its effectiveness, we recently designed sonosensitive sub-micrometric capsules (SCs) loaded with rtPA with a size of approximately 600 nm, synthesized using the layer-by-layer (LbL) technique, and coated with gelatine for clot targeting. In this study, we evaluated the rtPA release of ultrasound (US)-responsive SCs in healthy mice and the therapeutic effect in a thromboembolic stroke model. Results: In healthy mice, SCs loaded with rtPA 1 mg/kg responded properly to external US exposure, extending the half-life of the drug in the blood stream more than the group treated with free rtPA solution. The gelatine coating also contributed to stabilizing the encapsulation and maintaining the response to US. When the same particles were administered in the stroke model, these SCs appeared to aggregate in the ischemic brain region, probably generating secondary embolisms and limiting the thrombolytic effect of rtPA. Despite the promising results of these thrombolytic particles, at least under the dose and size conditions used in this study, the administration of these capsules represents a risk factor for stroke. Conclusions: This is the first study to report the aggregation risk of a drug carrier in neurological pathologies such as stroke. Biocompatibility analysis related to the use of nano-and microparticles should be deeply studied to anticipate the limitations and orientate the design of new nanoparticles for translation to humans. Graphical Abstract: [Figure not available: see fulltext.]en
dc.description.sponsorshipThis project was supported by the Instituto de Salud Carlos III (ISCIII)/AC20/00031 & AC20/00041, Cofinanciado FEDER, under the framework of EURONANOMED: ERANET -EuroNanoMed III_2020 (PLATMED_project), INTERREG Atlantic Area (EAPA_791/2018_NEUROATLANTIC project), INTERREG V A Espana Portugal (POCTEP) (0624_2IQBIONEURO_6_E), the European Union program FEDER, and the European Regional Development Fund (ERDF). This study was also supported by grants from the Xunta de Galicia (IN607D2020/03, ED431G2019/03, and ED431F 2020/11). E.P. and B. P. acknowledge AEI grants (PID2019-111218RBI00, RyC-2017-23457, and RYC2019-028238-I). Finally, T. S. and F.C. thank the ISCIII and Miguel Servet program (CPII17/00027 and CPII19/00020).en
dc.language.isoeng
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleSonosensitive capsules for brain thrombolysis increase ischemic damage in a stroke model*
dc.typeArticleen
dc.authorsophosCorrea-Paz, F. C.
dc.authorsophosNavarro Poupard, M. F.
dc.authorsophosPolo, E.
dc.authorsophosRodríguez-Pérez, M.
dc.authorsophosMigliavacca, M.
dc.authorsophosIglesias-Rey, R.
dc.authorsophosOuro, A.
dc.authorsophosMaqueda, E.
dc.authorsophosHervella, P.
dc.authorsophosSobrino, T.
dc.authorsophosCastillo, J.
dc.authorsophosdel Pino, P.
dc.authorsophosPelaz, B.
dc.authorsophosCampos
dc.identifier.doi10.1186/s12951-022-01252-9
dc.identifier.sophos61ff065213638e1cfc277607
dc.issue.number1
dc.journal.titleJournal of Nanobiotechnology*
dc.page.initialnull
dc.relation.projectIDInstituto de Salud Carlos III [(ISCIII)/AC20/00031, AC20/00041, EAPA_791/2018_NEUROATLANTIC]; FEDER [EAPA_791/2018_NEUROATLANTIC]; INTERREG V A Espana Portugal (POCTEP) [0624_2IQBIONEURO_6_E]; European Union program FEDER; European Regional Development Fund (ERDF); Xunta de Galicia [IN607D2020/03, ED431G2019/03, ED431F 2020/11]; Miguel Servet program [CPII17/00027, CPII19/00020]; [PID2019-111218RBI00]; [RyC-2017-23457]; [RYC2019-028238-I]
dc.relation.publisherversionhttps://jnanobiotechnology.biomedcentral.com/counter/pdf/10.1186/s12951-022-01252-9;https://jnanobiotechnology.biomedcentral.com/counter/pdf/10.1186/s12951-022-01252-9.pdfes
dc.rights.accessRightsopenAccess
dc.subject.keywordAS Coruña APes
dc.subject.keywordAS Santiagoes
dc.subject.keywordIDISes
dc.subject.keywordCHUSes
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)es
dc.typesophosArtículo Originales
dc.volume.number20


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional