Mostrar el registro sencillo del ítem

dc.contributor.authorMOSQUERA ORGUEIRA, ADRIAN 
dc.contributor.authorGonzález Pérez, Marta Sonia 
dc.contributor.authorDíaz Arias, José 
dc.contributor.authorRosiñol, L.
dc.contributor.authorOriol, A.
dc.contributor.authorTeruel, A.I.
dc.contributor.authorMartinez Lopez, J.
dc.contributor.authorPalomera, L.
dc.contributor.authorGranell, M.
dc.contributor.authorBlanchard, M.J.
dc.contributor.authorde la Rubia, J.
dc.contributor.authorLópez de la Guia, A.
dc.contributor.authorRios, R.
dc.contributor.authorSureda, A.
dc.contributor.authorHernandez, M.T.
dc.contributor.authorBengoechea, E.
dc.contributor.authorCalasanz, M.J.
dc.contributor.authorGutierrez, N.
dc.contributor.authorMartin, M.L.
dc.contributor.authorBlade, J.
dc.contributor.authorLahuerta, J.-J.
dc.contributor.authorSan Miguel, J.
dc.contributor.authorMateos, M.V.
dc.date.accessioned2025-08-25T12:40:05Z
dc.date.available2025-08-25T12:40:05Z
dc.date.issued2022
dc.identifier.citationMosquera Orgueira A, González Pérez MS, Diaz Arias J, Rosiñol L, Oriol A, Teruel AI, et al. Unsupervised machine learning improves risk stratification in newly diagnosed multiple myeloma: an analysis of the Spanish Myeloma Group. Blood cancer journal. 2022;12(4):76.
dc.identifier.issn2044-5385
dc.identifier.otherhttps://portalcientifico.sergas.gal/documentos/6276b6662c3d9944cd36d8aa*
dc.identifier.urihttp://hdl.handle.net/20.500.11940/20489
dc.description.abstractThe International Staging System (ISS) and the Revised International Staging System (R-ISS) are commonly used prognostic scores in multiple myeloma (MM). These methods have significant gaps, particularly among intermediate-risk groups. The aim of this study was to improve risk stratification in newly diagnosed MM patients using data from three different trials developed by the Spanish Myeloma Group. For this, we applied an unsupervised machine learning clusterization technique on a set of clinical, biochemical and cytogenetic variables, and we identified two novel clusters of patients with significantly different survival. The prognostic precision of this clusterization was superior to those of ISS and R-ISS scores, and appeared to be particularly useful to improve risk stratification among R-ISS 2 patients. Additionally, patients assigned to the low-risk cluster in the GEM05 over 65 years trial had a significant survival benefit when treated with VMP as compared with VTD. In conclusion, we describe a simple prognostic model for newly diagnosed MM whose predictions are independent of the ISS and R-ISS scores. Notably, the model is particularly useful in order to re-classify R-ISS score 2 patients in 2 different prognostic subgroups. The combination of ISS, R-ISS and unsupervised machine learning clusterization brings a promising approximation to improve MM risk stratification.en
dc.language.isoeng
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleUnsupervised machine learning improves risk stratification in newly diagnosed multiple myeloma: an analysis of the Spanish Myeloma Group*
dc.typeArticleen
dc.authorsophosMosquera Orgueira, M. V. A.
dc.authorsophosGonzález Pérez, M. S.
dc.authorsophosDiaz Arias, J.
dc.authorsophosRosiñol, L.
dc.authorsophosOriol, A.
dc.authorsophosTeruel, A. I.
dc.authorsophosMartinez Lopez, J.
dc.authorsophosPalomera, L.
dc.authorsophosGranell, M.
dc.authorsophosBlanchard, M. J.
dc.authorsophosde la Rubia, J.
dc.authorsophosLópez de la Guia, A.
dc.authorsophosRios, R.
dc.authorsophosSureda, A.
dc.authorsophosHernandez, M. T.
dc.authorsophosBengoechea, E.
dc.authorsophosCalasanz, M. J.
dc.authorsophosGutierrez, N.
dc.authorsophosMartin, M. L.
dc.authorsophosBlade, J.
dc.authorsophosLahuerta, J. J.
dc.authorsophosSan Miguel, J.
dc.authorsophosMateos
dc.identifier.doi10.1038/s41408-022-00647-z
dc.identifier.sophos6276b6662c3d9944cd36d8aa
dc.issue.number4
dc.journal.titleBlood cancer journal*
dc.page.initial76
dc.relation.publisherversionhttps://www.nature.com/articles/s41408-022-00647-z.pdfes
dc.rights.accessRightsopenAccess
dc.subject.keywordAS Santiagoes
dc.subject.keywordCHUSes
dc.subject.keywordIDISes
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)es
dc.typesophosArtículo Originales
dc.volume.number12


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional