Mostrar el registro sencillo del ítem

dc.contributor.authorQueiro, R.
dc.contributor.authorSeoane-Mato, D.
dc.contributor.authorLaiz, A.
dc.contributor.authorAgirregoikoa, E.G.
dc.contributor.authorMontilla, C.
dc.contributor.authorPark, H.-S.
dc.contributor.authorPinto Tasende, José Antonio 
dc.contributor.authorBethencourt Baute, J.J.
dc.contributor.authorIbáñez, B.J.
dc.contributor.authorToniolo, E.
dc.contributor.authorRamírez, J.
dc.contributor.authorGarcía, A.S.
dc.date.accessioned2025-08-26T07:50:10Z
dc.date.available2025-08-26T07:50:10Z
dc.date.issued2022
dc.identifier.citationQueiro R, Seoane-Mato D, Laiz A, Agirregoikoa EG, Montilla C, Park H-S, et al. Minimal disease activity (MDA) in patients with recent-onset psoriatic arthritis: predictive model based on machine learning. Arthritis research & therapy. 2022;24(1):153.
dc.identifier.issn1478-6362
dc.identifier.otherhttps://portalcientifico.sergas.gal/documentos/62c9e80ca405bc00e41806b0*
dc.identifier.urihttp://hdl.handle.net/20.500.11940/20557
dc.description.abstractBACKGROUND: Very few data are available on predictors of minimal disease activity (MDA) in patients with recent-onset psoriatic arthritis (PsA). Such data are crucial, since the therapeutic measures used to change the adverse course of PsA are more likely to succeed if we intervene early. In the present study, we used predictive models based on machine learning to detect variables associated with achieving MDA in patients with recent-onset PsA. METHODS: We performed a multicenter observational prospective study (2-year follow-up, regular annual visits). The study population comprised patients aged ?18 years who fulfilled the CASPAR criteria and less than 2 years since the onset of symptoms. The dataset contained data for the independent variables from the baseline visit and from follow-up visit number 1. These were matched with the outcome measures from follow-up visits 1 and 2, respectively. We trained a random forest-type machine learning algorithm to analyze the association between the outcome measure and the variables selected in the bivariate analysis. In order to understand how the model uses the variables to make its predictions, we applied the SHAP technique. We used a confusion matrix to visualize the performance of the model. RESULTS: The sample comprised 158 patients. 55.5% and 58.3% of the patients had MDA at the first and second follow-up visit, respectively. In our model, the variables with the greatest predictive ability were global pain, impact of the disease (PsAID), patient global assessment of disease, and physical function (HAQ-Disability Index). The percentage of hits in the confusion matrix was 85.94%. CONCLUSIONS: A key objective in the management of PsA should be control of pain, which is not always associated with inflammatory burden, and the establishment of measures to better control the various domains of PsA.en
dc.description.sponsorshipThis work was supported by AbbVie, which had no role in the design, data collection, data analysis, interpretation, or writing of this manuscript.en
dc.language.isoeng
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleMinimal disease activity (MDA) in patients with recent-onset psoriatic arthritis: predictive model based on machine learning*
dc.typeArticleen
dc.authorsophosQueiro, A. S. R.
dc.authorsophosSeoane-Mato, D.
dc.authorsophosLaiz, A.
dc.authorsophosAgirregoikoa, E. G.
dc.authorsophosMontilla, C.
dc.authorsophosPark, H. S.
dc.authorsophosPinto-Tasende, J. A.
dc.authorsophosBethencourt Baute, J. J.
dc.authorsophosIbáñez, B. J.
dc.authorsophosToniolo, E.
dc.authorsophosRamírez, J.
dc.authorsophosGarcía
dc.identifier.doi10.1186/s13075-022-02838-2
dc.identifier.sophos62c9e80ca405bc00e41806b0
dc.issue.number1
dc.journal.titleArthritis research & therapy*
dc.page.initial153
dc.relation.projectIDAbbVie
dc.relation.publisherversionhttps://arthritis-research.biomedcentral.com/counter/pdf/10.1186/s13075-022-02838-2;https://arthritis-research.biomedcentral.com/counter/pdf/10.1186/s13075-022-02838-2.pdfes
dc.rights.accessRightsopenAccess
dc.subject.keywordINIBICes
dc.subject.keywordAS Coruñaes
dc.subject.keywordCHUACes
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)es
dc.typesophosArtículo Originales
dc.volume.number24


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional