Mostrar el registro sencillo del ítem

dc.contributor.authorQueiro, R.
dc.contributor.authorSeoane-Mato, D.
dc.contributor.authorLaiz, A.
dc.contributor.authorGalindez Agirregoikoa, E.
dc.contributor.authorMontilla, C.
dc.contributor.authorPark, H.S.
dc.contributor.authorPinto Tasende, José Antonio 
dc.contributor.authorBethencourt Baute, J.J.
dc.contributor.authorJoven Ibáñez, B.
dc.contributor.authorToniolo, E.
dc.contributor.authorRamírez, J.
dc.contributor.authorPruenza García-Hinojosa, C.
dc.date.accessioned2025-08-26T08:16:47Z
dc.date.available2025-08-26T08:16:47Z
dc.date.issued2022
dc.identifier.citationQueiro R, Seoane-Mato D, Laiz A, Galindez Agirregoikoa E, Montilla C, Park HS, et al. Severe Disease in Patients With Recent-Onset Psoriatic Arthritis. Prediction Model Based on Machine Learning. Frontiers in Medicine. 2022;9.
dc.identifier.issn2296-858X
dc.identifier.otherhttps://portalcientifico.sergas.gal/documentos/62b79ba02c36f946adbb1aa4*
dc.identifier.urihttp://hdl.handle.net/20.500.11940/20588
dc.description.abstractObjectives: To identify patient- and disease-related characteristics that make it possible to predict higher disease severity in recent-onset PsA. Methods: We performed a multicenter observational prospective study (2-year follow-up, regular annual visits). The study population comprised patients aged ? 18 years who fulfilled the CASPAR criteria and less than 2 years since the onset of symptoms. Severe disease was defined at each visit as fulfillment of at least 1 of the following criteria: need for systemic treatment, Health Assessment Questionnaire (HAQ) > 0.5, polyarthritis. The dataset contained data for the independent variables from the baseline visit and follow-up visit number 1. These were matched with the outcome measures from follow-up visits 1 and 2, respectively. We trained a logistic regression model and random forest-type and XGBoost machine learning algorithms to analyze the association between the outcome measure and the variables selected in the bivariate analysis. Results: The sample comprised 158 patients. At the first follow-up visit, 78.2% of the patients who attended the clinic had severe disease. This percentage decreased to 76.4% at the second visit. The variables predicting severe disease were patient global pain, treatment with synthetic DMARDs, clinical form at diagnosis, high CRP, arterial hypertension, and psoriasis affecting the gluteal cleft and/or perianal area. The mean values of the measures of validity of the machine learning algorithms were all ? 80%. Conclusion: Our prediction model of severe disease advocates rigorous control of pain and inflammation, also addressing cardiometabolic comorbidities, in addition to actively searching for hidden psoriasis.en
dc.language.isoeng
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleSevere Disease in Patients With Recent-Onset Psoriatic Arthritis. Prediction Model Based on Machine Learning*
dc.typeArticleen
dc.authorsophosQueiro, C. R.
dc.authorsophosSeoane-Mato, D.
dc.authorsophosLaiz, A.
dc.authorsophosGalindez Agirregoikoa, E.
dc.authorsophosMontilla, C.
dc.authorsophosPark, H. S.
dc.authorsophosPinto Tasende, J. A.
dc.authorsophosBethencourt Baute, J. J.
dc.authorsophosJoven Ibáñez, B.
dc.authorsophosToniolo, E.
dc.authorsophosRamírez, J.
dc.authorsophosPruenza, García-Hinojosa
dc.identifier.doi10.3389/fmed.2022.891863
dc.identifier.sophos62b79ba02c36f946adbb1aa4
dc.journal.titleFrontiers in Medicine*
dc.relation.publisherversionhttps://www.frontiersin.org/articles/10.3389/fmed.2022.891863/pdf;https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2022.891863/pdfes
dc.rights.accessRightsopenAccess
dc.subject.keywordINIBICes
dc.subject.keywordAS Coruñaes
dc.subject.keywordCHUACes
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)es
dc.typesophosArtículo Originales
dc.volume.number9


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional