Mostrar el registro sencillo del ítem
Fully-Automatic 3D Intuitive Visualization of Age-Related Macular Degeneration Fluid Accumulations in OCT Cubes
dc.contributor.author | López Varela, Emilio | |
dc.contributor.author | Lizancos Vidal, Plácido Francisco | |
dc.contributor.author | Olivier Pascual, Nuria | |
dc.contributor.author | Novo Buján, Jorge | |
dc.contributor.author | Ortega Hortas, Marcos | |
dc.date.accessioned | 2025-08-26T08:48:20Z | |
dc.date.available | 2025-08-26T08:48:20Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | López-Varela E, Vidal PL, Pascual NO, Novo J, Ortega M. Fully-Automatic 3D Intuitive Visualization of Age-Related Macular Degeneration Fluid Accumulations in OCT Cubes. Journal of Digital Imaging. 2022;35(5):1271-82. | |
dc.identifier.issn | 1618-727X | |
dc.identifier.other | https://portalcientifico.sergas.gal/documentos/62f80c449162cc4ea7f1ec17 | * |
dc.identifier.uri | http://hdl.handle.net/20.500.11940/20605 | |
dc.description.abstract | Age-related macular degeneration is the leading cause of vision loss in developed countries, and wet-type AMD requires urgent treatment and rapid diagnosis because it causes rapid irreversible vision loss. Currently, AMD diagnosis is mainly carried out using images obtained by optical coherence tomography. This diagnostic process is performed by human clinicians, so human error may occur in some cases. Therefore, fully automatic methodologies are highly desirable adding a layer of robustness to the diagnosis. In this work, a novel computer-aided diagnosis and visualization methodology is proposed for the rapid identification and visualization of wet AMD. We adapted a convolutional neural network for segmentation of a similar domain of medical images to the problem of wet AMD segmentation, taking advantage of transfer learning, which allows us to work with and exploit a reduced number of samples. We generate a 3D intuitive visualization where the existence, position and severity of the fluid were represented in a clear and intuitive way to facilitate the analysis of the clinicians. The 3D visualization is robust and accurate, obtaining satisfactory 0.949 and 0.960 Dice coefficients in the different evaluated OCT cube configurations, allowing to quickly assess the presence and extension of the fluid associated to wet AMD. | en |
dc.description.sponsorship | ~Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Funding for open access charge: Universidade da Coruna/CISUG. The research was funded by Instituto de Salud Carlos III, Government of Spain through the PI17/00940 and DTS18/00136 research projects, Ministerio de Ciencia e Innovacion y Universidades, Government of Spain, RTI2018-095894-B-I00 research project, Ayudas para la formacion de profesorado universitario (FPU), grant ref. FPU18/02271; Ministerio de Ciencia e Innovacion, Government of Spain through the research project with reference PID2019-108435RB-I00; Conselleria de Cultura, Educacion e Universidade, unta de Galicia, Grupos de Referencia Competitiva, grant ref. ED431C 2020/24; CITIC, as Research Center accredited by Galician University System, is funded by Conselleria de Cultura, Educacion e Universidade from Xunta de Galicia, supported in an 80% through ERDF Funds, ERDF Operational Programme Galicia 2014-2020, and the remaining 20% by Secretaria Xeral de Universidades (Grant ED431G 2019/01). Emilio Lopez Varela acknowledges its support under FPI Grant Program through the PID2019-108435RB-I00 project. | en |
dc.language.iso | eng | |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.title | Fully-Automatic 3D Intuitive Visualization of Age-Related Macular Degeneration Fluid Accumulations in OCT Cubes | * |
dc.type | Article | en |
dc.authorsophos | López-Varela, M. E. | |
dc.authorsophos | Vidal, P. L. | |
dc.authorsophos | Pascual, N. O. | |
dc.authorsophos | Novo, J. | |
dc.authorsophos | Ortega | |
dc.identifier.doi | 10.1007/s10278-022-00643-6 | |
dc.identifier.sophos | 62f80c449162cc4ea7f1ec17 | |
dc.issue.number | 5 | |
dc.journal.title | Journal of Digital Imaging | * |
dc.page.initial | 1271 | |
dc.page.final | 1282 | |
dc.relation.projectID | CRUE-CSIC; Springer Nature; Universidade da Coruna/CISUG; Instituto de Salud Carlos III, Government of Spain [PI17/00940, DTS18/00136]; Ministerio de Ciencia e Innovacion y Universidades, Government of Spain [RTI2018-095894-B-I00]; Ayudas para la formacion de profesorado universitario (FPU) [FPU18/02271]; Ministerio de Ciencia e Innovacion, Government of Spain [PID2019-108435RB-I00]; Conselleria de Cultura, Educacion e Universidade, unta de Galicia, Grupos de Referencia Competitiva [ED431C 2020/24]; Conselleria de Cultura, Educacion e Universidade from Xunta de Galicia; ERDF Funds, ERDF Operational Programme Galicia 2014-2020; Secretaria Xeral de Universidades [ED431G 2019/01]; FPI Grant Program [PID2019-108435RB-I00] | |
dc.relation.publisherversion | https://link.springer.com/content/pdf/10.1007%2Fs10278-022-00643-6.pdf;https://link.springer.com/content/pdf/10.1007/s10278-022-00643-6.pdf | es |
dc.rights.accessRights | openAccess | |
dc.subject.keyword | INIBIC | es |
dc.subject.keyword | AS Coruña | es |
dc.subject.keyword | AS Ferrol | es |
dc.subject.keyword | CHUF | es |
dc.typefides | Artículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis) | es |
dc.typesophos | Artículo Original | es |
dc.volume.number | 35 |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
