Mostrar o rexistro simple do ítem

dc.contributor.authorZhou, Y.*
dc.contributor.authorChia, M.A.*
dc.contributor.authorWagner, S.K.*
dc.contributor.authorAyhan, M.S.*
dc.contributor.authorWilliamson, D.J.*
dc.contributor.authorStruyven, R.R.*
dc.contributor.authorLiu, T.*
dc.contributor.authorXu, M.*
dc.contributor.authorGende Lozano, Mateo*
dc.contributor.authorWoodward-Court, P.*
dc.contributor.authorKihara, Y.*
dc.contributor.authorAllen, N.*
dc.contributor.authorGallacher, J.E.J.*
dc.contributor.authorLittlejohns, T.*
dc.contributor.authorAslam, T.*
dc.contributor.authorBishop, P.*
dc.contributor.authorBlack, G.*
dc.contributor.authorSergouniotis, P.*
dc.contributor.authorAtan, D.*
dc.contributor.authorDick, A.D.*
dc.contributor.authorWilliams, C.*
dc.contributor.authorBarman, S.*
dc.contributor.authorBarrett, J.H.*
dc.contributor.authorMackie, S.*
dc.contributor.authorBraithwaite, T.*
dc.contributor.authorCarare, R.O.*
dc.contributor.authorEnnis, S.*
dc.contributor.authorGibson, J.*
dc.contributor.authorLotery, A.J.*
dc.contributor.authorSelf, J.*
dc.contributor.authorChakravarthy, U.*
dc.contributor.authorHogg, R.E.*
dc.contributor.authorPaterson, E.*
dc.contributor.authorWoodside, J.*
dc.contributor.authorPeto, T.*
dc.contributor.authorMckay, G.*
dc.contributor.authorMcguinness, B.*
dc.contributor.authorFoster, P.J.*
dc.contributor.authorBalaskas, K.*
dc.contributor.authorKhawaja, A.P.*
dc.contributor.authorPontikos, N.*
dc.contributor.authorRahi, J.S.*
dc.contributor.authorLascaratos, G.*
dc.contributor.authorPatel, P.J.*
dc.contributor.authorChan, M.*
dc.contributor.authorChua, S.Y.L.*
dc.contributor.authorDay, A.*
dc.contributor.authorDesai, P.*
dc.contributor.authorEgan, C.*
dc.contributor.authorFruttiger, M.*
dc.contributor.authorGarway-Heath, D.F.*
dc.contributor.authorHardcastle, A.*
dc.contributor.authorKhaw, S.P.T.*
dc.contributor.authorMoore, T.*
dc.contributor.authorSivaprasad, S.*
dc.contributor.authorStrouthidis, N.*
dc.contributor.authorThomas, D.*
dc.contributor.authorTufail, A.*
dc.contributor.authorViswanathan, A.C.*
dc.contributor.authorDhillon, B.*
dc.contributor.authorMacgillivray, T.*
dc.contributor.authorSudlow, C.*
dc.contributor.authorVitart, V.*
dc.contributor.authorDoney, A.*
dc.contributor.authorTrucco, E.*
dc.contributor.authorGuggeinheim, J.A.*
dc.contributor.authorMorgan, J.E.*
dc.contributor.authorHammond, C.J.*
dc.contributor.authorWilliams, K.*
dc.contributor.authorHysi, P.*
dc.contributor.authorHarding, S.P.*
dc.contributor.authorZheng, Y.*
dc.contributor.authorLuben, R.*
dc.contributor.authorLuthert, P.*
dc.contributor.authorSun, Z.*
dc.contributor.authorMcKibbin, M.*
dc.contributor.authorO'Sullivan, E.*
dc.contributor.authorOram, R.*
dc.contributor.authorWeedon, M.*
dc.contributor.authorOwen, C.G.*
dc.contributor.authorRudnicka, A.R.*
dc.contributor.authorSattar, N.*
dc.contributor.authorSteel, D.*
dc.contributor.authorStratton, I.*
dc.contributor.authorTapp, R.*
dc.contributor.authorYates, M.M.*
dc.contributor.authorPetzold, A.*
dc.contributor.authorMadhusudhan, S.*
dc.contributor.authorAltmann, A.*
dc.contributor.authorLee, A.Y.*
dc.contributor.authorTopol, E.J.*
dc.contributor.authorDenniston, A.K.*
dc.contributor.authorAlexander, D.C.*
dc.contributor.authorKeane, P.A.*
dc.date.accessioned2025-09-05T08:19:01Z
dc.date.available2025-09-05T08:19:01Z
dc.date.issued2023
dc.identifier.citationZhou Y, Chia MA, Wagner SK, Ayhan MS, Williamson DJ, Struyven RR, et al. A foundation model for generalizable disease detection from retinal images. Nature. 2023;622(7981):156-63.
dc.identifier.issn1476-4687
dc.identifier.otherhttps://portalcientifico.sergas.gal//documentos/65c7d9739c40e53c350f95f1
dc.identifier.urihttp://hdl.handle.net/20.500.11940/20977
dc.description.abstractMedical artificial intelligence (AI) offers great potential for recognizing signs of health conditions in retinal images and expediting the diagnosis of eye diseases and systemic disorders 1. However, the development of AI models requires substantial annotation and models are usually task-specific with limited generalizability to different clinical applications 2. Here, we present RETFound, a foundation model for retinal images that learns generalizable representations from unlabelled retinal images and provides a basis for label-efficient model adaptation in several applications. Specifically, RETFound is trained on 1.6 million unlabelled retinal images by means of self-supervised learning and then adapted to disease detection tasks with explicit labels. We show that adapted RETFound consistently outperforms several comparison models in the diagnosis and prognosis of sight-threatening eye diseases, as well as incident prediction of complex systemic disorders such as heart failure and myocardial infarction with fewer labelled data. RETFound provides a generalizable solution to improve model performance and alleviate the annotation workload of experts to enable broad clinical AI applications from retinal imaging.
dc.description.sponsorshipWe thank P. Rawlinson for project management, C. Green and L. Wickham for information governance expertise, and A. Wenban, S. St John-Green and M. Barnfield for information technology support. This work is supported by Engineering and Physical Sciences Research Council grant nos. EP/M020533/1, EP/R014019/1 and EP/V034537/1, as well as the NIHR UCLH Biomedical Research Centre. S.K.W. is supported by a Medical Research Council Clinical Research Training Fellowship (grant no. MR/TR000953/1). P.A.K. is supported by a Moorfields Eye Charity Career Development Award (grant no. R190028A) and a UK Research & Innovation Future Leaders Fellowship (grant no. MR/T019050/1). For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising.
dc.languageeng
dc.rightsAttribution 4.0 International (CC BY 4.0)*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.meshHumans *
dc.subject.meshArtificial Intelligence *
dc.subject.meshEye Diseases *
dc.subject.meshHeart Failure *
dc.subject.meshMyocardial Infarction *
dc.subject.meshRetina *
dc.subject.meshSupervised Machine Learning *
dc.titleA foundation model for generalizable disease detection from retinal images
dc.typeArtigo
dc.authorsophosZhou, Y.; Chia, M.A.; Wagner, S.K.; Ayhan, M.S.; Williamson, D.J.; Struyven, R.R.; Liu, T.; Xu, M.; Lozano, M.G.; Woodward-Court, P.; Kihara, Y.; Allen, N.; Gallacher, J.E.J.; Littlejohns, T.; Aslam, T.; Bishop, P.; Black, G.; Sergouniotis, P.; Atan, D.; Dick, A.D.; Williams, C.; Barman, S.; Barrett, J.H.; Mackie, S.; Braithwaite, T.; Carare, R.O.; Ennis, S.; Gibson, J.; Lotery, A.J.; Self, J.; Chakravarthy, U.; Hogg, R.E.; Paterson, E.; Woodside, J.; Peto, T.; Mckay, G.; Mcguinness, B.; Foster, P.J.; Balaskas, K.; Khawaja, A.P.; Pontikos, N.; Rahi, J.S.; Lascaratos, G.; Patel, P.J.; Chan, M.; Chua, S.Y.L.; Day, A.; Desai, P.; Egan, C.; Fruttiger, M.; Garway-Heath, D.F.; Hardcastle, A.; Khaw, S.P.T.; Moore, T.; Sivaprasad, S.; Strouthidis, N.; Thomas, D.; Tufail, A.; Viswanathan, A.C.; Dhillon, B.; Macgillivray, T.; Sudlow, C.; Vitart, V.; Doney, A.; Trucco, E.; Guggeinheim, J.A.; Morgan, J.E.; Hammond, C.J.; Williams, K.; Hysi, P.; Harding, S.P.; Zheng, Y.; Luben, R.; Luthert, P.; Sun, Z.; McKibbin, M.; O'Sullivan, E.; Oram, R.; Weedon, M.; Owen, C.G.; Rudnicka, A.R.; Sattar, N.; Steel, D.; Stratton, I.; Tapp, R.; Yates, M.M.; Petzold, A.; Madhusudhan, S.; Altmann, A.; Lee, A.Y.; Topol, E.J.; Denniston, A.K.; Alexander, D.C.; Keane, P.A.
dc.identifier.doi10.1038/s41586-023-06555-x
dc.identifier.sophos65c7d9739c40e53c350f95f1
dc.issue.number7981
dc.journal.titleNature*
dc.organizationInstituto de Investigación Biomédica de A Coruña (INIBIC)
dc.page.initial156
dc.page.final163
dc.relation.projectIDEngineering and Physical Sciences Research Council [EP/M020533/1, EP/R014019/1, EP/V034537/1]
dc.relation.projectIDNIHR UCLH Biomedical Research Centre
dc.relation.projectIDMedical Research Council Clinical Research Training Fellowship [MR/TR000953/1]
dc.relation.projectIDMoorfields Eye Charity Career Development Award [R190028A]
dc.relation.projectIDUK Research & Innovation Future Leaders Fellowship [MR/T019050/1]
dc.relation.projectIDEngineering and Physical Sciences Research Council [EP/M020533/1] Funding Source: researchfish
dc.relation.projectIDMedical Research Council [MC_UU_00007/10, MR/K003364/1, MC_PC_19005] Funding Source: researchfish
dc.relation.projectIDNational Institute for Health Research [NF-SI-0515-10020] Funding Source: researchfish
dc.relation.projectIDEPSRC [EP/V034537/1, EP/M020533/1] Funding Source: UKRI
dc.relation.projectIDFLF [MR/T019050/1] Funding Source: UKRI
dc.relation.projectIDGCRF [EP/R014019/1] Funding Source: UKRI
dc.relation.projectIDISCF [MC_PC_19005] Funding Source: UKRI
dc.relation.projectIDMRC [MC_UU_00007/10, MR/K003364/1] Funding Source: UKRI
dc.relation.publisherversionhttps://doi.org/10.1038/s41586-023-06555-x
dc.rights.accessRightsopenAccess*
dc.subject.keywordINIBIC
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtículo Original
dc.volume.number622


Ficheiros no ítem

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem

Attribution 4.0 International (CC BY 4.0)
A non ser que se indique outra cousa, a licenza do ítem descríbese comoAttribution 4.0 International (CC BY 4.0)