Mostrar o rexistro simple do ítem

dc.contributor.authorGende Lozano, Mateo*
dc.contributor.authorde Moura Ramos, Jose Joaquim*
dc.contributor.authorNovo Buján, Jorge*
dc.contributor.authorGonzález Penedo, Manuel*
dc.contributor.authorOrtega Hortas, Marcos*
dc.date.accessioned2025-09-05T08:20:55Z
dc.date.available2025-09-05T08:20:55Z
dc.date.issued2023
dc.identifier.citationGende M, de Moura J, Novo J, Penedo MG, Ortega M. A new generative approach for optical coherence tomography data scarcity: unpaired mutual conversion between scanning presets. Medical and Biological Engineering and Computing. 2023;61(5):1093-112.
dc.identifier.issn1741-0444
dc.identifier.otherhttps://portalcientifico.sergas.gal//documentos/63df0a616fdec82c4e7de7c8
dc.identifier.urihttp://hdl.handle.net/20.500.11940/20989
dc.description.abstractIn optical coherence tomography (OCT), there is a trade-off between the scanning time and image quality, leading to a scarcity of high quality data. OCT platforms provide different scanning presets, producing visually distinct images, limiting their compatibility. In this work, a fully automatic methodology for the unpaired visual conversion of the two most prevalent scanning presets is proposed. Using contrastive unpaired translation generative adversarial architectures, low quality images acquired with the faster Macular Cube preset can be converted to the visual style of high visibility Seven Lines scans and vice-versa. This modifies the visual appearance of the OCT images generated by each preset while preserving natural tissue structure. The quality of original and synthetic generated images was compared using brisque. The synthetic generated images achieved very similar scores to original images of their target preset. The generative models were validated in automatic and expert separability tests. These models demonstrated they were able to replicate the genuine look of the original images. This methodology has the potential to create multi-preset datasets with which to train robust computer-aided diagnosis systems by exposing them to the visual features of different presets they may encounter in real clinical scenarios without having to obtain additional data. [Figure not available: see fulltext.].
dc.description.sponsorshipOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This research was funded by Instituto de Salud Carlos III, Government of Spain (research project DTS18/00136); Ministerio de Ciencia e Innovacion, Government of Spain (research projects RTI2018-095894-B-I00, PID2019-108435RB-I00, TED2021-131201B-I00 and PDC2022-133132-I00); Conselleria de Cultura, Conselleria de Cultura, Educacion e Universidade, Xunta de Galicia, through Grupos de Referencia Competitiva (grant number ED431C 2020/24), predoctoral grant (grant number ED481A 2021/161) and postdoctoral grant (grant number ED481B 2021/059); Axencia Galega de Innovacion (GAIN), Xunta de Galicia (grant number IN845D 2020/38); CITIC, Centro de Investigacion de Galicia (grant number ED431G 2019/01), receives financial support from Conselleria de Educacion, Universidade e Formacion Profesional, Xunta de Galicia, through the ERDF (80%) and Secretaria Xeral de Universidades (20%). Funding for open access charge: Universidade da Coruna/CISUG.
dc.languageeng
dc.rightsAttribution 4.0 International (CC BY 4.0)*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.meshTomography, Optical Coherence *
dc.subject.meshDiagnosis, Computer-Assisted *
dc.subject.meshImage Processing, Computer-Assisted*
dc.titleA new generative approach for optical coherence tomography data scarcity: unpaired mutual conversion between scanning presets
dc.typeArtigo
dc.authorsophosGende, M.; de Moura, J.; Novo, J.; Penedo, M.G.; Ortega, M.
dc.identifier.doi10.1007/s11517-022-02742-6
dc.identifier.sophos63df0a616fdec82c4e7de7c8
dc.issue.number5
dc.journal.titleMedical and Biological Engineering and Computing*
dc.organizationInstituto de Investigación Biomédica de A Coruña (INIBIC)
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Instituto de Investigación Biomédica de A Coruña (INIBIC)
dc.organizationInstituto de Investigación Biomédica de A Coruña (INIBIC)
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Instituto de Investigación Biomédica de A Coruña (INIBIC)::Informática, sistemas e tecnoloxías da información
dc.organizationInstituto de Investigación Biomédica de A Coruña (INIBIC)
dc.page.initial1093
dc.page.final1112
dc.relation.projectIDSpringer Nature
dc.relation.projectIDInstituto de Salud Carlos III, Government of Spain [DTS18/00136]
dc.relation.projectIDMinisterio de Ciencia e Innovacion, Government of Spain [RTI2018-095894-B-I00, PID2019-108435RB-I00, TED2021-131201B-I00, PDC2022-133132-I00]
dc.relation.projectIDConselleria de Cultura, Conselleria de Cultura, Educacion e Universidade, Xunta de Galicia, through Grupos de Referencia Competitiva [ED431C 2020/24, ED481A 2021/161, ED481B 2021/059]
dc.relation.projectIDAxencia Galega de Innovacion (GAIN), Xunta de Galicia [ED431G 2019/01]
dc.relation.projectIDConselleria de Educacion, Universidade e Formacion Profesional, Xunta de Galicia, through the ERDF
dc.relation.projectIDSecretaria Xeral de Universidades
dc.relation.projectIDUniversidade da Coruna/CISUG
dc.relation.publisherversionhttps://doi.org/10.1007/s11517-022-02742-6
dc.rights.accessRightsopenAccess*
dc.subject.keywordINIBIC
dc.subject.keywordAS A Coruña
dc.subject.keywordINIBIC
dc.subject.keywordINIBIC
dc.subject.keywordAS A Coruña
dc.subject.keywordINIBIC
dc.subject.keywordINIBIC
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtículo Original
dc.volume.number61


Ficheiros no ítem

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem

Attribution 4.0 International (CC BY 4.0)
A non ser que se indique outra cousa, a licenza do ítem descríbese comoAttribution 4.0 International (CC BY 4.0)