Show simple item record

dc.contributor.authorGarcía-Andrade, X.*
dc.contributor.authorGarcía Tahoces, Pablo*
dc.contributor.authorPérez-Ríos, J.*
dc.contributor.authorMartínez Núñez, E.*
dc.date.accessioned2025-09-08T11:44:02Z
dc.date.available2025-09-08T11:44:02Z
dc.date.issued2023
dc.identifier.citationGarcía-Andrade X, García Tahoces P, Pérez-Ríos J, Martínez Núñez E. Barrier Height Prediction by Machine Learning Correction of Semiempirical Calculations. Journal of Physical Chemistry A. 2023;127(10):2274-83.
dc.identifier.issn1520-5215
dc.identifier.otherhttps://portalcientifico.sergas.gal//documentos/642b3757a1c8a315fd233136
dc.identifier.urihttp://hdl.handle.net/20.500.11940/21137
dc.description.abstractDifferent machine learning (ML) models are proposed in the present work to predict density functional theory-quality barrier heights (BHs) from semiempirical quantum mechanical (SQM) calculations. The ML models include a multitask deep neural network, gradient-boosted trees by means of the XGBoost interface, and Gaussian process regression. The obtained mean absolute errors are similar to those of previous models considering the same number of data points. The ML corrections proposed in this paper could be useful for rapid screening of the large reaction networks that appear in combustion chemistry or in astrochemistry. Finally, our results show that 70% of the features with the highest impact on model output are bespoke predictors. This custom-made set of predictors could be employed by future ?-ML models to improve the quantitative prediction of other reaction properties.
dc.description.sponsorshipThis work was partially supported by Conselleria de Cultura, Educacion e Ordenacion Universitaria (Grupo de referencia competitiva ED431C 2021/40) and by Ministerio de Ciencia e Innovacion through Grant #PID2019-107307RB-I00. J.P.-R. acknowledges the support of the Simons Foundation.
dc.languageeng
dc.rightsAttribution 4.0 International (CC BY 4.0)*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleBarrier Height Prediction by Machine Learning Correction of Semiempirical Calculations
dc.typeArtigo
dc.authorsophosGarcía-Andrade, X.; García Tahoces, P.; Pérez-Ríos, J.; Martínez Núñez, E.
dc.identifier.doi10.1021/acs.jpca.2c08340
dc.identifier.sophos642b3757a1c8a315fd233136
dc.issue.number10
dc.journal.titleJournal of Physical Chemistry A*
dc.page.initial2274
dc.page.final2283
dc.relation.projectIDConselleria de Cultura, Educacion e Ordenacion Universitaria [ED431C 2021/40]
dc.relation.projectIDMinisterio de Ciencia e Innovacion [PID2019-107307RB-I00]
dc.relation.projectIDSimons Foundation
dc.relation.publisherversionhttps://doi.org/10.1021/acs.jpca.2c08340
dc.rights.accessRightsopenAccess*
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtículo Original
dc.volume.number127


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)