Mostrar o rexistro simple do ítem
Data-Driven Phenotyping of Alzheimer's Disease under Epigenetic Conditions Using Partial Volume Correction of PET Studies and Manifold Learning
dc.contributor.author | Campanioni, S. | * |
dc.contributor.author | González-Nóvoa, J.A. | * |
dc.contributor.author | Busto, L. | * |
dc.contributor.author | Agis Balboa, Roberto Carlos | * |
dc.contributor.author | Veiga Garcia, Cesar | * |
dc.date.accessioned | 2025-09-08T12:23:37Z | |
dc.date.available | 2025-09-08T12:23:37Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Campanioni S, González-Nóvoa JA, Busto L, Agís-Balboa RC, Veiga C. Data-Driven Phenotyping of Alzheimer's Disease under Epigenetic Conditions Using Partial Volume Correction of PET Studies and Manifold Learning. Biomedicines. 2023;11(2). | |
dc.identifier.issn | 2227-9059 | |
dc.identifier.other | https://portalcientifico.sergas.gal//documentos/64046e89d5b0fa1e7b277274 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11940/21306 | |
dc.description.abstract | Alzheimer's disease (AD) is the most common form of dementia. An increasing number of studies have confirmed epigenetic changes in AD. Consequently, a robust phenotyping mechanism must take into consideration the environmental effects on the patient in the generation of phenotypes. Positron Emission Tomography (PET) is employed for the quantification of pathological amyloid deposition in brain tissues. The objective is to develop a new methodology for the hyperparametric analysis of changes in cognitive scores and PET features to test for there being multiple AD phenotypes. We used a computational method to identify phenotypes in a retrospective cohort study (532 subjects), using PET and Magnetic Resonance Imaging (MRI) images and neuropsychological assessments, to develop a novel computational phenotyping method that uses Partial Volume Correction (PVC) and subsets of neuropsychological assessments in a non-biased fashion. Our pipeline is based on a Regional Spread Function (RSF) method for PVC and a t-distributed Stochastic Neighbor Embedding (t-SNE) manifold. The results presented demonstrate that (1) the approach to data-driven phenotyping is valid, (2) the different techniques involved in the pipelines produce different results, and (3) they permit us to identify the best phenotyping pipeline. The method identifies three phenotypes and permits us to analyze them under epigenetic conditions. | |
dc.description.sponsorship | This research was partially funded by Union Europea-NextGenerationEU, whithin the framework Plan de recuperacion, transformacion y resiliencia (expediente: TR349V-2022-10000052-00), Programa Investigo, Conselleria de Emprego e Igualdade, Xunta de Galicia. This work was partially supported by Axencia Galega de Innovacion (GAIN) through Proxectos de investigacion sobre o SARS-CoV-2 e a enfermidade COVID-19 con cargo ao Fondo COVID-19 program, with Code Number IN845D-2020/29 to C. Veiga. This research was partially funded by Axudas para a consolidacion e estruturacion de unidades de investigacion competitivas e outras accions de fomento nos organismos publicos de investigacion de Galicia e noutras entidades do sistema galego de I+D+i-GPC with Code Number IN607B-2021/18, and this research was partially funded by Instituto de Salud Carlos III through the project PI18/01311 (co-funded by European Regional Development Fund (FEDER), A way to make Europe) to R.C. Agis-Balboa. | |
dc.language | eng | |
dc.rights | Attribution 4.0 International (CC BY 4.0) | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Data-Driven Phenotyping of Alzheimer's Disease under Epigenetic Conditions Using Partial Volume Correction of PET Studies and Manifold Learning | |
dc.type | Artigo | |
dc.authorsophos | Campanioni, S.; González-Nóvoa, J.A.; Busto, L.; Agís-Balboa, R.C.; Veiga, C. | |
dc.identifier.doi | 10.3390/biomedicines11020273 | |
dc.identifier.sophos | 64046e89d5b0fa1e7b277274 | |
dc.issue.number | 2 | |
dc.journal.title | Biomedicines | * |
dc.organization | Servizo Galego de Saúde::Áreas Sanitarias (A.S.) - Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS) | |
dc.organization | Instituto de Investigación Sanitaria Galicia Sur (IISGS) | |
dc.relation.projectID | Xunta de Galicia [TR349V-2022-10000052-00] | |
dc.relation.projectID | Axencia Galega de Innovacion (GAIN) [SARS-CoV-2 e a enfermidade COVID-19, IN845D-2020/29, IN607B-2021/18] | |
dc.relation.projectID | Instituto de Salud Carlos III | |
dc.relation.projectID | European Regional Development Fund (FEDER) [PI18/01311] | |
dc.relation.publisherversion | https://doi.org/10.3390/biomedicines11020273 | |
dc.rights.accessRights | openAccess | * |
dc.subject.keyword | AS Santiago | |
dc.subject.keyword | IDIS | |
dc.subject.keyword | IISGS | |
dc.typefides | Artículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis) | |
dc.typesophos | Artículo Original | |
dc.volume.number | 11 |
Ficheiros no ítem
Este ítem aparece na(s) seguinte(s) colección(s)
A non ser que se indique outra cousa, a licenza do ítem descríbese comoAttribution 4.0 International (CC BY 4.0)
