Mostrar o rexistro simple do ítem

dc.contributor.authorCampanioni, S.*
dc.contributor.authorGonzález-Nóvoa, J.A.*
dc.contributor.authorBusto, L.*
dc.contributor.authorAgis Balboa, Roberto Carlos *
dc.contributor.authorVeiga Garcia, Cesar*
dc.date.accessioned2025-09-08T12:23:37Z
dc.date.available2025-09-08T12:23:37Z
dc.date.issued2023
dc.identifier.citationCampanioni S, González-Nóvoa JA, Busto L, Agís-Balboa RC, Veiga C. Data-Driven Phenotyping of Alzheimer's Disease under Epigenetic Conditions Using Partial Volume Correction of PET Studies and Manifold Learning. Biomedicines. 2023;11(2).
dc.identifier.issn2227-9059
dc.identifier.otherhttps://portalcientifico.sergas.gal//documentos/64046e89d5b0fa1e7b277274
dc.identifier.urihttp://hdl.handle.net/20.500.11940/21306
dc.description.abstractAlzheimer's disease (AD) is the most common form of dementia. An increasing number of studies have confirmed epigenetic changes in AD. Consequently, a robust phenotyping mechanism must take into consideration the environmental effects on the patient in the generation of phenotypes. Positron Emission Tomography (PET) is employed for the quantification of pathological amyloid deposition in brain tissues. The objective is to develop a new methodology for the hyperparametric analysis of changes in cognitive scores and PET features to test for there being multiple AD phenotypes. We used a computational method to identify phenotypes in a retrospective cohort study (532 subjects), using PET and Magnetic Resonance Imaging (MRI) images and neuropsychological assessments, to develop a novel computational phenotyping method that uses Partial Volume Correction (PVC) and subsets of neuropsychological assessments in a non-biased fashion. Our pipeline is based on a Regional Spread Function (RSF) method for PVC and a t-distributed Stochastic Neighbor Embedding (t-SNE) manifold. The results presented demonstrate that (1) the approach to data-driven phenotyping is valid, (2) the different techniques involved in the pipelines produce different results, and (3) they permit us to identify the best phenotyping pipeline. The method identifies three phenotypes and permits us to analyze them under epigenetic conditions.
dc.description.sponsorshipThis research was partially funded by Union Europea-NextGenerationEU, whithin the framework Plan de recuperacion, transformacion y resiliencia (expediente: TR349V-2022-10000052-00), Programa Investigo, Conselleria de Emprego e Igualdade, Xunta de Galicia. This work was partially supported by Axencia Galega de Innovacion (GAIN) through Proxectos de investigacion sobre o SARS-CoV-2 e a enfermidade COVID-19 con cargo ao Fondo COVID-19 program, with Code Number IN845D-2020/29 to C. Veiga. This research was partially funded by Axudas para a consolidacion e estruturacion de unidades de investigacion competitivas e outras accions de fomento nos organismos publicos de investigacion de Galicia e noutras entidades do sistema galego de I+D+i-GPC with Code Number IN607B-2021/18, and this research was partially funded by Instituto de Salud Carlos III through the project PI18/01311 (co-funded by European Regional Development Fund (FEDER), A way to make Europe) to R.C. Agis-Balboa.
dc.languageeng
dc.rightsAttribution 4.0 International (CC BY 4.0)*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleData-Driven Phenotyping of Alzheimer's Disease under Epigenetic Conditions Using Partial Volume Correction of PET Studies and Manifold Learning
dc.typeArtigo
dc.authorsophosCampanioni, S.; González-Nóvoa, J.A.; Busto, L.; Agís-Balboa, R.C.; Veiga, C.
dc.identifier.doi10.3390/biomedicines11020273
dc.identifier.sophos64046e89d5b0fa1e7b277274
dc.issue.number2
dc.journal.titleBiomedicines*
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)
dc.organizationInstituto de Investigación Sanitaria Galicia Sur (IISGS)
dc.relation.projectIDXunta de Galicia [TR349V-2022-10000052-00]
dc.relation.projectIDAxencia Galega de Innovacion (GAIN) [SARS-CoV-2 e a enfermidade COVID-19, IN845D-2020/29, IN607B-2021/18]
dc.relation.projectIDInstituto de Salud Carlos III
dc.relation.projectIDEuropean Regional Development Fund (FEDER) [PI18/01311]
dc.relation.publisherversionhttps://doi.org/10.3390/biomedicines11020273
dc.rights.accessRightsopenAccess*
dc.subject.keywordAS Santiago
dc.subject.keywordIDIS
dc.subject.keywordIISGS
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtículo Original
dc.volume.number11


Ficheiros no ítem

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem

Attribution 4.0 International (CC BY 4.0)
A non ser que se indique outra cousa, a licenza do ítem descríbese comoAttribution 4.0 International (CC BY 4.0)