Mostrar el registro sencillo del ítem

dc.contributor.authorGato Corral, Eva*
dc.contributor.authorArroyo, M.J.*
dc.contributor.authorMéndez, G.*
dc.contributor.authorCandela González, Ana*
dc.contributor.authorRodiño Janeiro, Bruno K*
dc.contributor.authorFernández, J.*
dc.contributor.authorRodríguez-Sánchez, B.*
dc.contributor.authorMancera, L.*
dc.contributor.authorArca Suárez, Jorge*
dc.contributor.authorBeceiro Casas, Alejandro*
dc.contributor.authorBou Arévalo, Germán *
dc.contributor.authorOviaño García, Marina *
dc.date.accessioned2025-09-09T10:21:06Z
dc.date.available2025-09-09T10:21:06Z
dc.date.issued2023
dc.identifier.citationGato E, Arroyo MJ, Méndez G, Candela A, Rodiño-Janeiro BK, Fernández J, et al. Direct Detection of Carbapenemase-Producing Klebsiella pneumoniae by MALDI-TOF Analysis of Full Spectra Applying Machine Learning. Journal of clinical microbiology. 2023;61(6):e0175122.
dc.identifier.issn1098-660X
dc.identifier.otherhttps://portalcientifico.sergas.gal//documentos/64be33023bbfc602eae592e1
dc.identifier.urihttp://hdl.handle.net/20.500.11940/21354
dc.description.abstractMALDI-TOF MS is considered to be an important tool for the future development of rapid microbiological techniques. We propose the application of MALDI-TOF MS as a dual technique for the identification of bacteria and the detection of resistance, with no extra hands-on procedures. We have developed a machine learning approach that uses the random forest algorithm for the direct prediction of carbapenemase-producing Klebsiella pneumoniae (CPK) isolates, based on the spectra of complete cells. For this purpose, we used a database of 4,547 mass spectra profiles, including 715 unduplicated clinical isolates that are represented by 324 CPK with 37 different ST. The impact of the culture medium was determinant in the CPK prediction, being that the isolates were tested and cultured in the same media, compared to the isolates used to build the model (blood agar). The proposed method has an accuracy of 97.83% for the prediction of CPK and an accuracy of 95.24% for the prediction of OXA-48 or KPC carriage. For the CPK prediction, the RF algorithm yielded a value of 1.00 for both the area under the receiver operating characteristic curve and the area under the precision-recall curve. The contribution of individual mass peaks to the CPK prediction was determined using Shapley values, which revealed that the complete proteome, rather than a series of mass peaks or potential biomarkers (as previously suggested), is responsible for the algorithm-based classification. Thus, the use of the full spectrum, as proposed here, with a pattern-matching analytical algorithm produced the best outcome. The use of MALDI-TOF MS coupled with machine learning algorithm processing enabled the identification of CPK isolates within only a few minutes, thereby reducing the time to detection of resistance.
dc.description.sponsorshipThis work was supported by funding awarded to M.O. through the 2019 competitive research call of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC). M.O. was financially supported by the Juan Rodes program (ISCIII-SERGAS, JR18/00006), and E.G. was financially supported by the 2019 research call of the SEIMC and J.A.S. was financially supported by the Juan Rodes programme (JR21/00026). This research was supported by the project PI20/00686 within the National Plan for Scientific Research, Development and Technological Innovation 2020 and funded by the ISCIII-General Subdirection of Assessment and Promotion of the Research - European Regional Development Fund (FEDER) A way of making Europe through the Centro de Investigacion Biomedica en Red Enfermedades Infecciosas (CIBERINFEC). The study was also funded by the project IN607A 2020/05 (GAIN-Agencia Gallega de Innovacion-Conselleria de Economia, Emprego e Industria), which was awarded to G.B. Clover Biosoft received funding from the European Union's Horizon H2020 research and innovation program under grant agreement no. 868365. The authors (E.G., A.C., B.K.R.J., J.F., B.R.S., L.M., J.A.S., A.B., G.B., and M.O.) certify that they have no involvement in any organization or entity with any financial interest in the subject matter contained in the manuscript. M.J.A. and G.M. are employed by Clover Bioanalytical software SL. L.M. is the CEO of Clover Bioanalytical software SL. This research was made possible by the helpful collaboration of the following researchers: Irene Merino, Emilia Cercenado, Rosa Gomez, Tamara Soler, Irene Gracia-Ahufinger, Lina Martin, Fatima Galan, Nuria Tormo, Juan Carlos Rodriguez, Silvia Capilla, Francesc Marco, Maria Dolores Quesada, Emma Padilla, Fe Tubau, Juanjo Gonzalez, Ana Isabel Lopez-Calleja, Jose Luis del Pozo, Maria Inmaculada Garcia, Mariela Martinez, Jorge Calvo, Xavier Mulet, Fernanda Pena, Ana Isabel Rodriguez, Maria Jose Gude, Ana Fernadez, and Javier Fernandez, who belong to the GEMARA-SEIMC/REIPI Enterobacterales research group.
dc.languageeng
dc.rightsAttribution 4.0 International (CC BY 4.0)*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.meshHumans *
dc.subject.meshKlebsiella pneumoniae *
dc.subject.meshSpectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization*
dc.subject.meshKlebsiella Infections *
dc.subject.meshCarbapenem-Resistant Enterobacteriaceae *
dc.subject.meshMachine Learning *
dc.titleDirect Detection of Carbapenemase-Producing Klebsiella pneumoniae by MALDI-TOF Analysis of Full Spectra Applying Machine Learning
dc.typeArtigo
dc.authorsophosGato, E.; Arroyo, M.J.; Méndez, G.; Candela, A.; Rodiño-Janeiro, B.K.; Fernández, J.; Rodríguez-Sánchez, B.; Mancera, L.; Arca-Suárez, J.; Beceiro, A.; Bou, G.; Oviaño, M.
dc.identifier.doi10.1128/jcm.01751-22
dc.identifier.sophos64be33023bbfc602eae592e1
dc.issue.number6
dc.journal.titleJournal of clinical microbiology*
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario A Coruña::Microbioloxía
dc.organizationInstituto de Investigación Biomédica de A Coruña (INIBIC)
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario A Coruña::Microbioloxía
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario A Coruña::Unidade de investigación
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario A Coruña::Microbioloxía
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario A Coruña::Microbioloxía
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario A Coruña::Microbioloxía
dc.page.initiale0175122
dc.relation.projectIDSpanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) [ISCIII-SERGAS, JR18/00006, JR21/00026, PI20/00686]
dc.relation.projectIDISCIII-General Subdirection of Assessment and Promotion of the Research - European Regional Development Fund (FEDER) A way of making Europe through the Centro de Investigacion Biomedica en Red Enfermedades Infecciosas [IN607A 2020/05]
dc.relation.projectIDEuropean Union [868365]
dc.relation.publisherversionhttps://doi.org/10.1128/jcm.01751-22
dc.rights.accessRightsopenAccess*
dc.subject.keywordAS A Coruña
dc.subject.keywordCHUAC
dc.subject.keywordINIBIC
dc.subject.keywordAS A Coruña
dc.subject.keywordCHUAC
dc.subject.keywordAS A Coruña
dc.subject.keywordCHUAC
dc.subject.keywordAS A Coruña
dc.subject.keywordCHUAC
dc.subject.keywordAS A Coruña
dc.subject.keywordCHUAC
dc.subject.keywordAS A Coruña
dc.subject.keywordCHUAC
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtículo Original
dc.volume.number61


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution 4.0 International (CC BY 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International (CC BY 4.0)