Mostrar el registro sencillo del ítem

dc.contributor.authorReboredo, J.C.*
dc.contributor.authorBarba-Queiruga, J.R.*
dc.contributor.authorOjea-Ferreiro, J.*
dc.contributor.authorReyes Santías, Francisco *
dc.date.accessioned2025-09-09T11:23:20Z
dc.date.available2025-09-09T11:23:20Z
dc.date.issued2023
dc.identifier.citationReboredo JC, Barba-Queiruga JR, Ojea-Ferreiro J, Reyes-Santias F. Forecasting emergency department arrivals using INGARCH models. Health Economics Review. 2023;13(1).
dc.identifier.issn2191-1991
dc.identifier.otherhttps://portalcientifico.sergas.gal//documentos/6550da0392517a5a7db94df1
dc.identifier.urihttp://hdl.handle.net/20.500.11940/21511
dc.description.abstractBackground: Forecasting patient arrivals to hospital emergency departments is critical to dealing with surges and to efficient planning, management and functioning of hospital emerency departments. Objective: We explore whether past mean values and past observations are useful to forecast daily patient arrivals in an Emergency Department. Material and methods: We examine whether an integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) model can yield a better conditional distribution fit and forecast of patient arrivals by using past arrival information and taking into account the dynamics of the volatility of arrivals. Results: We document that INGARCH models improve both in-sample and out-of-sample forecasts, particularly in the lower and upper quantiles of the distribution of arrivals. Conclusion: Our results suggest that INGARCH modelling is a useful model for short-term and tactical emergency department planning, e.g., to assign rotas or locate staff for unexpected surges in patient arrivals.
dc.description.sponsorshipMinisterio de Ciencia, Innovacion y Universidades) under research project with reference PID2021-124336OB-I00 co-funded by the European Regional Development Fund (ERDF/FEDER).
dc.languageeng
dc.rightsAttribution 4.0 International (CC BY 4.0)*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleForecasting emergency department arrivals using INGARCH models
dc.typeArtigo
dc.authorsophosReboredo, J.C.; Barba-Queiruga, J.R.; Ojea-Ferreiro, J.; Reyes-Santias, F.
dc.identifier.doi10.1186/s13561-023-00456-5
dc.identifier.sophos6550da0392517a5a7db94df1
dc.issue.number1
dc.journal.titleHealth Economics Review*
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Santiago::Xestión sanitaria e dirección
dc.relation.projectIDMinisterio de Ciencia, Innovacion y Universidades [PID2021-124336OB-I00]
dc.relation.projectIDEuropean Regional Development Fund (ERDF/FEDER)
dc.relation.publisherversionhttps://doi.org/10.1186/s13561-023-00456-5
dc.rights.accessRightsopenAccess*
dc.subject.keywordAS Santiago
dc.subject.keywordCHUS
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtículo Original
dc.volume.number13


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution 4.0 International (CC BY 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International (CC BY 4.0)