Mostrar el registro sencillo del ítem
Improving Intensive Care Unit Early Readmission Prediction Using Optimized and Explainable Machine Learning
dc.contributor.author | González-Nóvoa, J.A. | * |
dc.contributor.author | Campanioni, S. | * |
dc.contributor.author | Busto, L. | * |
dc.contributor.author | Fariña, J. | * |
dc.contributor.author | Rodríguez-Andina, J.J. | * |
dc.contributor.author | Vila Fernández, Dolores | * |
dc.contributor.author | Iñiguez Romo, Andres | * |
dc.contributor.author | Veiga Garcia, Cesar | * |
dc.date.accessioned | 2025-09-09T12:42:10Z | |
dc.date.available | 2025-09-09T12:42:10Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | González-Nóvoa JA, Campanioni S, Busto L, Fariña J, Rodríguez-Andina JJ, Vila D, et al. Improving Intensive Care Unit Early Readmission Prediction Using Optimized and Explainable Machine Learning. International Journal of Environmental Research and Public Health. 2023;20(4). | |
dc.identifier.issn | 1660-4601 | |
dc.identifier.other | https://portalcientifico.sergas.gal//documentos/640d5f7af0c92964f8440c47 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11940/21620 | |
dc.description.abstract | It is of great interest to develop and introduce new techniques to automatically and efficiently analyze the enormous amount of data generated in today's hospitals, using state-of-the-art artificial intelligence methods. Patients readmitted to the ICU in the same hospital stay have a higher risk of mortality, morbidity, longer length of stay, and increased cost. The methodology proposed to predict ICU readmission could improve the patients' care. The objective of this work is to explore and evaluate the potential improvement of existing models for predicting early ICU patient readmission by using optimized artificial intelligence algorithms and explainability techniques. In this work, XGBoost is used as a predictor model, combined with Bayesian techniques to optimize it. The results obtained predicted early ICU readmission (AUROC of 0.92 ± 0.03) improves state-of-the-art consulted works (whose AUROC oscillate between 0.66 and 0.78). Moreover, we explain the internal functioning of the model by using Shapley Additive Explanation-based techniques, allowing us to understand the model internal performance and to obtain useful information, as patient-specific information, the thresholds from which a feature begins to be critical for a certain group of patients, and the feature importance ranking. | |
dc.language | eng | |
dc.rights | Attribution 4.0 International (CC BY 4.0) | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.mesh | Humans | * |
dc.subject.mesh | Artificial Intelligence | * |
dc.subject.mesh | Patient Readmission | * |
dc.subject.mesh | Bayes Theorem | * |
dc.subject.mesh | Machine Learning | * |
dc.subject.mesh | Intensive Care Units | * |
dc.title | Improving Intensive Care Unit Early Readmission Prediction Using Optimized and Explainable Machine Learning | |
dc.type | Artigo | |
dc.authorsophos | González-Nóvoa, J.A.; Campanioni, S.; Busto, L.; Fariña, J.; Rodríguez-Andina, J.J.; Vila, D.; Íñiguez, A.; Veiga, C. | |
dc.identifier.doi | 10.3390/ijerph20043455 | |
dc.identifier.sophos | 640d5f7af0c92964f8440c47 | |
dc.issue.number | 4 | |
dc.journal.title | International Journal of Environmental Research and Public Health | * |
dc.organization | Servizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Vigo::Medicina intensiva | |
dc.organization | Servizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Vigo::Cardioloxía | |
dc.organization | Instituto de Investigación Sanitaria Galicia Sur (IISGS) | |
dc.relation.publisherversion | https://doi.org/10.3390/ijerph20043455 | |
dc.rights.accessRights | openAccess | * |
dc.subject.keyword | AS Vigo | |
dc.subject.keyword | CHUVI | |
dc.subject.keyword | AS Vigo | |
dc.subject.keyword | CHUVI | |
dc.subject.keyword | IISGS | |
dc.typefides | Artículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis) | |
dc.typesophos | Artículo Original | |
dc.volume.number | 20 |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International (CC BY 4.0)
