Mostrar el registro sencillo del ítem

dc.contributor.authorGonzález-Nóvoa, J.A.*
dc.contributor.authorCampanioni, S.*
dc.contributor.authorBusto, L.*
dc.contributor.authorFariña, J.*
dc.contributor.authorRodríguez-Andina, J.J.*
dc.contributor.authorVila Fernández, Dolores *
dc.contributor.authorIñiguez Romo, Andres *
dc.contributor.authorVeiga Garcia, Cesar*
dc.date.accessioned2025-09-09T12:42:10Z
dc.date.available2025-09-09T12:42:10Z
dc.date.issued2023
dc.identifier.citationGonzález-Nóvoa JA, Campanioni S, Busto L, Fariña J, Rodríguez-Andina JJ, Vila D, et al. Improving Intensive Care Unit Early Readmission Prediction Using Optimized and Explainable Machine Learning. International Journal of Environmental Research and Public Health. 2023;20(4).
dc.identifier.issn1660-4601
dc.identifier.otherhttps://portalcientifico.sergas.gal//documentos/640d5f7af0c92964f8440c47
dc.identifier.urihttp://hdl.handle.net/20.500.11940/21620
dc.description.abstractIt is of great interest to develop and introduce new techniques to automatically and efficiently analyze the enormous amount of data generated in today's hospitals, using state-of-the-art artificial intelligence methods. Patients readmitted to the ICU in the same hospital stay have a higher risk of mortality, morbidity, longer length of stay, and increased cost. The methodology proposed to predict ICU readmission could improve the patients' care. The objective of this work is to explore and evaluate the potential improvement of existing models for predicting early ICU patient readmission by using optimized artificial intelligence algorithms and explainability techniques. In this work, XGBoost is used as a predictor model, combined with Bayesian techniques to optimize it. The results obtained predicted early ICU readmission (AUROC of 0.92 ± 0.03) improves state-of-the-art consulted works (whose AUROC oscillate between 0.66 and 0.78). Moreover, we explain the internal functioning of the model by using Shapley Additive Explanation-based techniques, allowing us to understand the model internal performance and to obtain useful information, as patient-specific information, the thresholds from which a feature begins to be critical for a certain group of patients, and the feature importance ranking.
dc.languageeng
dc.rightsAttribution 4.0 International (CC BY 4.0)*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.meshHumans *
dc.subject.meshArtificial Intelligence *
dc.subject.meshPatient Readmission *
dc.subject.meshBayes Theorem *
dc.subject.meshMachine Learning *
dc.subject.meshIntensive Care Units *
dc.titleImproving Intensive Care Unit Early Readmission Prediction Using Optimized and Explainable Machine Learning
dc.typeArtigo
dc.authorsophosGonzález-Nóvoa, J.A.; Campanioni, S.; Busto, L.; Fariña, J.; Rodríguez-Andina, J.J.; Vila, D.; Íñiguez, A.; Veiga, C.
dc.identifier.doi10.3390/ijerph20043455
dc.identifier.sophos640d5f7af0c92964f8440c47
dc.issue.number4
dc.journal.titleInternational Journal of Environmental Research and Public Health*
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Vigo::Medicina intensiva
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Vigo::Cardioloxía
dc.organizationInstituto de Investigación Sanitaria Galicia Sur (IISGS)
dc.relation.publisherversionhttps://doi.org/10.3390/ijerph20043455
dc.rights.accessRightsopenAccess*
dc.subject.keywordAS Vigo
dc.subject.keywordCHUVI
dc.subject.keywordAS Vigo
dc.subject.keywordCHUVI
dc.subject.keywordIISGS
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtículo Original
dc.volume.number20


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution 4.0 International (CC BY 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International (CC BY 4.0)