Mostrar el registro sencillo del ítem

dc.contributor.authorRodríguez-Álvarez, M.X.*
dc.contributor.authorDurbán, M.*
dc.contributor.authorEilers, P.H.C.*
dc.contributor.authorLee, D.-J.*
dc.contributor.authorGonzález García, Francisco *
dc.date.accessioned2025-09-12T11:44:26Z
dc.date.available2025-09-12T11:44:26Z
dc.date.issued2023
dc.identifier.citationRodríguez-Álvarez MX, Durbán M, Eilers PHC, Lee D-J, Gonzalez F. Multidimensional adaptive P-splines with application to neurons" activity studies. Biometrics. 2023;79(3):1972-85.
dc.identifier.issn1541-0420
dc.identifier.otherhttps://portalcientifico.sergas.gal//documentos/6367091b688cd71757e14c68
dc.identifier.urihttp://hdl.handle.net/20.500.11940/21759
dc.description.abstractThe receptive field (RF) of a visual neuron is the region of the space that elicits neuronal responses. It can be mapped using different techniques that allow inferring its spatial and temporal properties. Raw RF maps (RFmaps) are usually noisy, making it difficult to obtain and study important features of the RF. A possible solution is to smooth them using P-splines. Yet, raw RFmaps are characterized by sharp transitions in both space and time. Their analysis thus asks for spatiotemporal adaptive P-spline models, where smoothness can be locally adapted to the data. However, the literature lacks proposals for adaptive P-splines in more than two dimensions. Furthermore, the extra flexibility afforded by adaptive P-spline models is obtained at the cost of a high computational burden, especially in a multidimensional setting. To fill these gaps, this work presents a novel anisotropic locally adaptive P-spline model in two (e.g., space) and three (space and time) dimensions. Estimation is based on the recently proposed SOP (Separation of Overlapping Precision matrices) method, which provides the speed we look for. Besides the spatiotemporal analysis of the neuronal activity data that motivated this work, the practical performance of the proposal is evaluated through simulations, and comparisons with alternative methods are reported.
dc.languageeng
dc.rightsAttribution 4.0 International (CC BY 4.0)*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.meshNeurons *
dc.titleMultidimensional adaptive P-splines with application to neurons' activity studies
dc.typeArtigo
dc.authorsophosRodríguez-Álvarez, M.X.; Durbán, M.; Eilers, P.H.C.; Lee, D.-J.; Gonzalez, F.
dc.identifier.doi10.1111/biom.13755
dc.identifier.sophos6367091b688cd71757e14c68
dc.issue.number3
dc.journal.titleBiometrics*
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Complexo Hospitalario Universitario de Santiago::Oftalmoloxía
dc.page.initial1972
dc.page.final1985
dc.relation.publisherversionhttps://doi.org/10.1111/biom.13755
dc.rights.accessRightsopenAccess*
dc.subject.keywordAS Santiago
dc.subject.keywordCHUS
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtículo Original
dc.volume.number79


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution 4.0 International (CC BY 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International (CC BY 4.0)