Show simple item record

dc.contributor.authorLizancos Vidal, Plácido Francisco*
dc.contributor.authorde Moura Ramos, Jose Joaquim*
dc.contributor.authorNovo Buján, Jorge*
dc.contributor.authorOrtega Hortas, Marcos*
dc.date.accessioned2025-09-12T11:44:37Z
dc.date.available2025-09-12T11:44:37Z
dc.date.issued2023
dc.identifier.citationVidal P, de Moura J, Novo J, Ortega M. Multivendor fully automatic uncertainty management approaches for the intuitive representation of DME fluid accumulations in OCT images. Medical and Biological Engineering and Computing. 2023;61(5):1209-24.
dc.identifier.issn1741-0444
dc.identifier.otherhttps://portalcientifico.sergas.gal//documentos/63df0a616fdec82c4e7de7bd
dc.identifier.urihttp://hdl.handle.net/20.500.11940/21764
dc.description.abstractDiabetes represents one of the main causes of blindness in developed countries, caused by fluid accumulations in the retinal layers. The clinical literature defines the different types of diabetic macular edema (DME) as cystoid macular edema (CME), diffuse retinal thickening (DRT), and serous retinal detachment (SRD), each with its own clinical relevance. These fluid accumulations do not present defined borders that facilitate segmentational approaches (specially the DRT type, usually not taken into account by the state of the art for this reason) so a diffuse paradigm is used for its detection and visualization. In this paper, we propose three novel approaches for the representation and characterization of these types of DME. A baseline proposal, using a convolutional neural network as backbone, another based on transfer learning from a general domain, and a third approach exploiting information of regions without a defined label. Overall, our baseline proposal obtained an AUC of 0.9583 ± 0.0093, the approach pretrained with a general-domain dataset an AUC of 0.9603 ± 0.0087, and the approach pretrained in the domain taking advantage of uncertainty, an AUC of 0.9619 ± 0.0073. [Figure not available: see fulltext.].
dc.description.sponsorshipOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Funding for Open Access charge: Universidade da Coruna/CISUG. This research was funded by Instituto de Salud Carlos III, Government of Spain, DTS18/00136 research project; Ministerio de Ciencia e Innovacion y Universidades, Government of Spain, RTI2018-095894-B-I00 research project, Ayudas para la formacion de profesorado universitario (FPU), grant ref. FPU18/02271; Ministerio de Ciencia e Innovacion, Government of Spain through the research projects PID2019-108435RB-I00, PDC2022-133132-I00 and TED2021-131201B-I00; Consellerfa de Cultura, Educacion e Universidade, Xunta de Galicia, Grupos de Referencia Competitiva, grant ref. ED431C 2020/24 and through the postdoctoral grant contract ref. ED481B 2021/059; Axencia Galega de Innovacion (GAIN), Xunta de Galicia, grant ref. IN845D 2020/38; CITIC, as Research Center accredited by Galician University System, is funded by Consellerfa de Cultura, Educacion e Universidade from Xunta de Galicia, supported in an 80% through ERDF Funds, ERDF Operational Programme Galicia 2014-2020, and the remaining 20% by Secretarfa Xeral de Universidades (Grant ED431G 2019/01).
dc.languageeng
dc.rightsAttribution 4.0 International (CC BY 4.0)*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.meshHumans *
dc.subject.meshMacular Edema *
dc.subject.meshDiabetic Retinopathy *
dc.subject.meshUncertainty *
dc.subject.meshTomography, Optical Coherence *
dc.subject.meshVisual Acuity *
dc.subject.meshRetrospective Studies *
dc.titleMultivendor fully automatic uncertainty management approaches for the intuitive representation of DME fluid accumulations in OCT images
dc.typeArtigo
dc.authorsophosVidal, P.; de Moura, J.; Novo, J.; Ortega, M.
dc.identifier.doi10.1007/s11517-022-02765-z
dc.identifier.sophos63df0a616fdec82c4e7de7bd
dc.issue.number5
dc.journal.titleMedical and Biological Engineering and Computing*
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Instituto de Investigación Biomédica de A Coruña (INIBIC)
dc.organizationServizo Galego de Saúde::Áreas Sanitarias (A.S.) - Instituto de Investigación Biomédica de A Coruña (INIBIC)
dc.organizationInstituto de Investigación Biomédica de A Coruña (INIBIC)
dc.organizationInstituto de Investigación Biomédica de A Coruña (INIBIC)
dc.page.initial1209
dc.page.final1224
dc.relation.projectIDCRUE-CSIC
dc.relation.projectIDSpringer Nature
dc.relation.projectIDInstituto de Salud Carlos III, Government of Spain [DTS18/00136]
dc.relation.projectIDMinisterio de Ciencia e Innovacion y Universidades, Government of Spain [RTI2018-095894-B-I00]
dc.relation.projectIDMinisterio de Ciencia e Innovacion, Government of Spain [PID2019-108435RB-I00, PDC2022-133132-I00, TED2021-131201B-I00]
dc.relation.projectIDConsellerfa de Cultura, Educacion e Universidade, Xunta de Galicia, Grupos de Referencia Competitiva [ED431C 2020/24, ED481B 2021/059]
dc.relation.projectIDAxencia Galega de Innovacion (GAIN), Xunta de Galicia [IN845D 2020/38]
dc.relation.projectIDCITIC
dc.relation.projectIDConsellerfa de Cultura, Educacion e Universidade from Xunta de Galicia
dc.relation.projectIDERDF Funds
dc.relation.projectIDERDF Operational Programme Galicia
dc.relation.projectIDSecretarfa Xeral de Universidades [ED431G 2019/01]
dc.relation.projectID[FPU18/02271]
dc.relation.publisherversionhttps://doi.org/10.1007/s11517-022-02765-z
dc.rights.accessRightsopenAccess*
dc.subject.keywordAS A Coruña
dc.subject.keywordINIBIC
dc.subject.keywordAS A Coruña
dc.subject.keywordINIBIC
dc.subject.keywordINIBIC
dc.subject.keywordINIBIC
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtículo Original
dc.volume.number61


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)