Mostrar el registro sencillo del ítem

dc.contributor.authorGarcia-Gonzalez, D.*
dc.contributor.authorRivero Cebrián, Daniel*
dc.contributor.authorFernández Blanco, Enrique*
dc.contributor.authorLuaces, M.R.*
dc.date.accessioned2025-09-12T11:45:56Z
dc.date.available2025-09-12T11:45:56Z
dc.date.issued2023
dc.identifier.citationGarcia-Gonzalez D, Rivero D, Fernandez-Blanco E, Luaces MR. New machine learning approaches for real-life human activity recognition using smartphone sensor-based data. Knowledge-Based Systems. 2023;262.
dc.identifier.issn0950-7051
dc.identifier.otherhttps://portalcientifico.sergas.gal//documentos/63d5b3daf851ee1ba3e9ebd6
dc.identifier.urihttp://hdl.handle.net/20.500.11940/21782
dc.description.abstractIn recent years, mainly due to the application of smartphones in this area, research in human activity recognition (HAR) has shown a continuous and steady growth. Thanks to its wide range of sensors, its size, its ease of use, its low price and its applicability in many other fields, it is a highly attractive option for researchers. However, the vast majority of studies carried out so far focus on laboratory settings, outside of a real-life environment. In this work, unlike in other papers, progress was sought on the latter point. To do so, a dataset already published for this purpose was used. This dataset was collected using the sensors of the smartphones of different individuals in their daily life, with almost total freedom. To exploit these data, numerous experiments were carried out with various machine learning techniques and each of them with different hyperparameters. These experiments proved that, in this case, tree-based models, such as Random Forest, outperform the rest. The final result shows an enormous improvement in the accuracy of the best model found to date for this purpose, from 74.39% to 92.97%.
dc.description.sponsorshipThis research was partially funded by MCIN/AEI/10.13039/501100011033, NextGenerationEU/PRTR, FLATCITY-POC, Spain [grant number PDC2021-121239-C31]; MCIN/AEI/10.13039/501100011033 MAGIST, Spain [grant number PID2019-105221RB-C41]; Xunta de Galicia/FEDER-UE, Spain [grant numbers ED431G 2019/01, ED481A 2020/003, ED431C 2022/46, ED431C 2018/49 and ED431C 2021/53]. Funding for open access charge: Universidade da Coruna/CISUG.
dc.languageeng
dc.rightsAttribution 4.0 International (CC BY 4.0)*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleNew machine learning approaches for real-life human activity recognition using smartphone sensor-based data
dc.typeArtigo
dc.authorsophosGarcia-Gonzalez, D.; Rivero, D.; Fernandez-Blanco, E.; Luaces, M.R.
dc.identifier.doi10.1016/j.knosys.2023.110260
dc.identifier.sophos63d5b3daf851ee1ba3e9ebd6
dc.journal.titleKnowledge-Based Systems*
dc.organizationInstituto de Investigación Biomédica de A Coruña (INIBIC)
dc.organizationInstituto de Investigación Biomédica de A Coruña (INIBIC)
dc.relation.projectIDMCIN/AEI, NextGenerationEU/PRTR, FLATCITY-POC, Spain [PDC2021-121239-C31]
dc.relation.projectIDMCIN/AEI, MAGIST, Spain [PID2019-105221RB-C41]
dc.relation.projectIDXunta de Galicia/FEDER-UE, Spain [ED431G 2019/01, ED481A 2020/003, ED431C 2022/46, ED431C 2018/49, ED431C 2021/53]
dc.relation.projectIDUniversidade da Coruna/CISUG
dc.relation.publisherversionhttps://doi.org/10.1016/j.knosys.2023.110260
dc.rights.accessRightsopenAccess*
dc.subject.keywordINIBIC
dc.subject.keywordINIBIC
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtículo Original
dc.volume.number262


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution 4.0 International (CC BY 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International (CC BY 4.0)