Mostrar el registro sencillo del ítem
Optical diagnosis in still images of colorectal polyps: comparison between expert endoscopists and PolyDeep, a Computer-Aided Diagnosis system
| dc.contributor.author | Davila Piñon, Pedro | |
| dc.contributor.author | Nogueira Rodríguez, Alba | |
| dc.contributor.author | Díez Martín, Astrid Irene | |
| dc.contributor.author | Codesido, Laura | |
| dc.contributor.author | Herrero, Jesús | |
| dc.contributor.author | Puga Gimenez de Azcárate, Manuel | |
| dc.contributor.author | Rivas Moral, Laura | |
| dc.contributor.author | Sánchez Hernández, Eloy | |
| dc.contributor.author | Fernández Riverola, Florentino | |
| dc.contributor.author | González Peña, Daniel | |
| dc.contributor.author | Reboiro Jato, Miguel | |
| dc.contributor.author | López Fernández, Hugo | |
| dc.contributor.author | Cubiella Fernández, Joaquín | |
| dc.date.accessioned | 2025-11-07T08:16:06Z | |
| dc.date.available | 2025-11-07T08:16:06Z | |
| dc.date.issued | 2024-05-23 | |
| dc.identifier.other | https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2024.1393815/full | es |
| dc.identifier.other | https://pubmed.ncbi.nlm.nih.gov/38846970/ | es |
| dc.identifier.uri | http://hdl.handle.net/20.500.11940/22159 | |
| dc.description.abstract | [EN] Background: PolyDeep is a computer-aided detection and classification (CADe/ x) system trained to detect and classify polyps. During colonoscopy, CADe/x systems help endoscopists to predict the histology of colonic lesions. Objective: To compare the diagnostic performance of PolyDeep and expert endoscopists for the optical diagnosis of colorectal polyps on still images. Methods: PolyDeep Image Classification (PIC) is an in vitro diagnostic test study. The PIC database contains NBI images of 491 colorectal polyps with histological diagnosis. We evaluated the diagnostic performance of PolyDeep and four expert endoscopists for neoplasia (adenoma, sessile serrated lesion, traditional serrated adenoma) and adenoma characterization and compared them with the McNemar test. Receiver operating characteristic curves were constructed to assess the overall discriminatory ability, comparing the area under the curve of endoscopists and PolyDeep with the chi- square homogeneity areas test. Results: The diagnostic performance of the endoscopists and PolyDeep in the characterization of neoplasia is similar in terms of sensitivity (PolyDeep: 89.05%; E1: 91.23%, p=0.5; E2: 96.11%, p<0.001; E3: 86.65%, p=0.3; E4: 91.26% p=0.3) and specificity (PolyDeep: 35.53%; E1: 33.80%, p=0.8; E2: 34.72%, p=1; E3: 39.24%, p=0.8; E4: 46.84%, p=0.2). The overall discriminative ability also showed no statistically significant differences (PolyDeep: 0.623; E1: 0.625, p=0.8; E2: 0.654, p=0.2; E3: 0.629, p=0.9; E4: 0.690, p=0.09). In the optical diagnosis of adenomatous polyps, we found that PolyDeep had a significantly higher sensitivity and a significantly lower specificity. The overall discriminative ability of adenomatous lesions by expert endoscopists is significantly higher than PolyDeep (PolyDeep: 0.582; E1: 0.685, p < 0.001; E2: 0.677, p < 0.0001; E3: 0.658, p < 0.01; E4: 0.694, p < 0.0001).Conclusion: PolyDeep and endoscopists have similar diagnostic performance in the optical diagnosis of neoplastic lesions. However, endoscopists have a better global discriminatory ability than PolyDeep in the optical diagnosis of adenomatous polyps. | es |
| dc.language.iso | eng | es |
| dc.relation.isreferencedby | https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2024.1393815/full | es |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject.mesh | Diagnostic Screening Programs | * |
| dc.subject.mesh | Colonoscopy | * |
| dc.subject.mesh | Artificial Intelligence | * |
| dc.subject.mesh | Deep Learning | * |
| dc.subject.mesh | Colonic Polyps | * |
| dc.title | Optical diagnosis in still images of colorectal polyps: comparison between expert endoscopists and PolyDeep, a Computer-Aided Diagnosis system | es |
| dc.type | Artigo | es |
| dc.identifier.doi | https://doi.org/10.3389/fonc.2024.1393815 | |
| dc.journal.title | Frontiers in Oncology | es |
| dc.organization | Servizo Galego de Saúde::Áreas Sanitarias (A.S.)::Área Sanitaria de Ourense, Verín e O Barco de Valdeorras - Complexo Hospitalario Universitario de Ourense | es |
| dc.organization | Servizo Galego de Saúde::Áreas Sanitarias (A.S.)::Instituto de Investigación Sanitaria Galicia Sur ((IISGS) | es |
| dc.page.initial | 1393815 | es |
| dc.relation.publisherversion | https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2024.1393815/full | es |
| dc.rights.accessRights | openAccess | es |
| dc.subject.decs | colonoscopia | * |
| dc.subject.decs | Programas de Detección Diagnóstica | * |
| dc.subject.decs | Aprendizaje Profundo | * |
| dc.subject.decs | pólipos del colon | * |
| dc.subject.keyword | CHUO | es |
| dc.subject.keyword | IISGS | es |
| dc.typefides | Artigo Científico (inclue Orixinal, Orixinal breve, Revisión Sistemática e Meta-análisis) | es |
| dc.typesophos | Artículo Original | es |
| dc.volume.number | 14 | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional







