Mostrar el registro sencillo del ítem

dc.contributor.authorBaran, Y.
dc.contributor.authorQuintela García, Inés
dc.contributor.authorCarracedo Álvarez, Ángel
dc.contributor.authorPasaniuc, B.
dc.contributor.authorHalperin, E.
dc.date.accessioned2017-06-07T07:05:18Z
dc.date.available2017-06-07T07:05:18Z
dc.date.issued2013
dc.identifier.issn0002-9297
dc.identifier.urihttp://hdl.handle.net/20.500.11940/2432
dc.description.abstractCharacterizing the spatial patterns of genetic diversity in human populations has a wide range of applications, from detecting genetic mutations associated with disease to inferring human history. Current approaches, including the widely used principal-component analysis, are not suited for the analysis of linked markers, and local and long-range linkage disequilibrium (LD) can dramatically reduce the accuracy of spatial localization when unaccounted for. To overcome this, we have introduced an approach that performs spatial localization of individuals on the basis of their genetic data and explicitly models LD among markers by using a multivariate normal distribution. By leveraging external reference panels, we derive closed-form solutions to the optimization procedure to achieve a computationally efficient method that can handle large data sets. We validate the method on empirical data from a large sample of European individuals from the POPRES data set, as well as on a large sample of individuals of Spanish ancestry. First, we show that by modeling LD, we achieve accuracy superior to that of existing methods. Importantly, whereas other methods show decreased performance when dense marker panels are used in the inference, our approach improves in accuracy as more markers become available. Second, we show that accurate localization of genetic data can be achieved with only a part of the genome, and this could potentially enable the spatial localization of admixed samples that have a fraction of their genome originating from a given continent. Finally, we demonstrate that our approach is resistant to distortions resulting from long-range LD regions; such distortions can dramatically bias the results when unaccounted for.
dc.language.isoeng
dc.subject.meshAlgorithms
dc.subject.meshGenetic Markers
dc.subject.meshGenetics, Population
dc.subject.meshGenome, Human
dc.subject.meshHumans
dc.subject.meshLinkage Disequilibrium
dc.subject.meshModels, Genetic
dc.subject.meshPhylogeography
dc.subject.meshPolymorphism, Single Nucleotide
dc.subject.meshPrincipal Component Analysis
dc.subject.meshSoftware
dc.subject.meshSpain
dc.titleEnhanced localization of genetic samples through linkage-disequilibrium correction
dc.typeArtigoes
dc.authorsophosBaran, Y.
dc.authorsophosQuintela, I.
dc.authorsophosCarracedo, Á
dc.authorsophosPasaniuc, B.
dc.authorsophosHalperin, E.
dc.identifier.doi10.1016/j.ajhg.2013.04.023
dc.identifier.isi320415300005
dc.identifier.pmid23726367
dc.identifier.sophos13168
dc.issue.number6
dc.journal.titleAMERICAN JOURNAL OF HUMAN GENETICS
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::EOXI de Santiago::IDIS.- Instituto de investigaciones sanitarias de Santiago
dc.organizationConsellería de Sanidade::Fundación pública Galega de Medicina Xenómica
dc.page.initial882
dc.page.final894
dc.relation.publisherversionhttp://www.cell.com/article/S0002929713002103/pdf
dc.rights.accessRightsopenAccess
dc.typesophosArtículo Original
dc.volume.number92


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem