Repositorio digital RUNA

    • Español
    • Galego
    • English
  • Español 
    • Español
    • Galego
    • English
  • Login
RUNABibliosaúdeXunta de galicia. Consellería de sanidadeServicio Galego de saúde
  • REPOSITORIO
  • SOBRE NOSOTROS
    • Sobre RUNA
    • Normativa
    • Política Sergas
  • AYUDA
    • Ayuda
    • FAQ
  •   RUNA Principal
  • Publicación científica
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

In vivo inhibition of the mitochondrial H+-ATP synthase in neurons promotes metabolic preconditioning

Formentini L, Pereira M. P. Sánchez-Cenizo L. Santacatterina F. Lucas J. J. Navarro C. Martínez-Serrano A. Cuezva J. M.
Thumbnail
Estadísticas
Estadísticas
Ver Estadísticas de uso
Identificadores
Identificadores
URI: http://hdl.handle.net/20.500.11940/357
PMID: 24521670
DOI: 10.1002/embj.201386392
ISSN: 0261-4189
Registro completo
Servicios
Servicios
RISMendeleyLinksolver
Fecha de publicación
2014
Título de revista
EMBO JOURNAL
Tipo de contenido
Artigo
MeSH
Animals | Apoptosis | Behavior, Animal | Brain | Gene Expression Regulation, Enzymologic | Glycolysis | Humans | Male | Metabolic Networks and Pathways | Mice | Mice, Transgenic | Mitochondria | Mitochondrial Proton-Translocating ATPases | Models, Animal | Mutation, Missense | Neurons | Neurotoxins | Oxidative Phosphorylation | Promoter Regions, Genetic | Quinolinic Acid | Reactive Oxygen Species | Signal Transduction
Resumen
A key transducer in energy conservation and signaling cell death is the mitochondrial H(+)-ATP synthase. The expression of the ATPase inhibitory factor 1 (IF1) is a strategy used by cancer cells to inhibit the activity of the H(+)-ATP synthase to generate a ROS signal that switches on cellular programs of survival. We have generated a mouse model expressing a mutant of human IF1 in brain neurons to assess the role of the H(+)-ATP synthase in cell death in vivo. The expression of hIF1 inhibits the activity of oxidative phosphorylation and mediates the shift of neurons to an enhanced aerobic glycolysis. Metabolic reprogramming induces brain preconditioning affording protection against quinolinic acid-induced excitotoxicity. Mechanistically, preconditioning involves the activation of the Akt/p70S6K and PARP repair pathways and Bcl-xL protection from cell death. Overall, our findings provide the first in vivo evidence highlighting the H(+)-ATP synthase as a target to prevent neuronal cell death.

Navega

Todo RUNAColeccionesCentrosAutoresTítulosDeCSMeSHCIETipos de contenidosEsta colecciónCentrosAutoresTítulosDeCSMeSHCIETipos de contenidos

Estadísticas

Ver Estadísticas de uso

DE INTERÉS

Sobre Acceso AbiertoDerechos de autor
TwitterRSS
Xunta de Galicia
© Xunta de Galicia. Información mantida e publicada na internet pola Consellería de Sanidade o Servizo Galego de Saúde
Aviso legal | RSS
Galicia