Comprehensive annotation of splice junctions supports pervasive alternative splicing at the BRCA1 locus: a report from the ENIGMA consortium
Colombo, M.; Blok, M. J.; Whiley, P.; Santamariña Pena, Marta; Gutiérrez-Enríquez, S.; Romero, A.; Garre, P.; Becker, A.; Smith, L. D.; De Vecchi, G.; Brandão, R. D.; Tserpelis, D.; Brown, M.; Blanco, A.; Bonache, S.; Menéndez, M.; Houdayer, C.; Foglia, C.; Fackenthal, J. D.; Baralle, D.; Wappenschmidt, B.; Díaz-Rubio, E.; Caldés, T.; Walker, L.; Díez, O.; Vega Gliemmo, Ana; Spurdle, A. B.; Radice, P.; De La Hoya, M.; Investigators, kConFaB
Identificadores
Identificadores
Visualización o descarga de ficheros
Visualización o descarga de ficheros
Fecha de publicación
2014Título de revista
HUMAN MOLECULAR GENETICS
Tipo de contenido
Artigo
MeSH
Alternative Splicing | BRCA1 Protein | Breast | Female | Humans | Protein Isoforms | RNA, Messenger | Reverse Transcriptase Polymerase Chain Reaction | Sequence Analysis, RNAResumen
Loss-of-function germline mutations in BRCA1 (MIM #113705) confer markedly increased risk of breast and ovarian cancer. The full-length transcript codifies for a protein involved in DNA repair pathways and cell-cycle checkpoints. Several BRCA1 splicing isoforms have been described in public domain databases, but the physiological role (if any) of BRCA1 alternative splicing remains to be established. An accurate description of 'naturally occurring' alternative splicing at this locus is a prerequisite to understand its biological significance. However, a systematic analysis of alternative splicing at the BRCA1 locus is yet to be conducted. Here, the Evidence-Based Network for the Interpretation of Germ-Line Mutant Alleles consortium combines RT-PCR, exon scanning, cloning, sequencing and relative semi-quantification to describe naturally occurring BRCA1 alternative splicing with unprecedented resolution. The study has been conducted in blood-related RNA sources, commonly used for clinical splicing assays, as well as in one healthy breast tissue. We have characterized a total of 63 BRCA1 alternative splicing events, including 35 novel findings. A minimum of 10 splicing events (Delta1Aq, Delta5, Delta5q, Delta8p, Delta9, Delta(9,10), Delta9_11, Delta11q, Delta13p and Delta14p) represent a substantial fraction of the full-length expression level (ranging from 5 to 100%). Remarkably, our data indicate that BRCA1 alternative splicing is similar in blood and breast, a finding supporting the clinical relevance of blood-based in vitro splicing assays. Overall, our data suggest an alternative splicing model in which most non-mutually exclusive alternative splicing events are randomly combined into individual mRNA molecules to produce hundreds of different BRCA1 isoforms.