Multiple Local and Recent Founder Effects of TGM1 in Spanish Families
Date issued
2012Journal title
PLoS One
Type of content
Artigo
DeCS
Proteínas de Choque Térmico | Efecto Fundador | Genes Recesivos | Haplotipos | IctiosisMeSH
Founder Effect | Genes, Recessive | Haplotypes | IchthyosisAbstract
Background: Mutations in the TGM1 gene encoding transglutaminase 1 are a major cause of autosomal recessive congenital ichthyosis. In the Galician (NW Spain) population, three mutations, c.2278C>T, c.1223_1227delACAC and c.984+1G>A, were observed at high frequency, representing ~46%, ~21% and ~13% of all TGM1 gene mutations, respectively. Moreover, these mutations were reported only once outside of Galicia, pointing to the existence of historical episodes of local severe genetic drift in this region.
Methodology/principal findings: In order to determine whether these mutations were inherited from a common ancestor in the Galician population, and to estimate the number of generations since their initial appearance, we carried out a haplotype-based analysis by way of genotyping 21 SNPs within and flanking the TGM1 gene and 10 flanking polymorphic microsatellite markers spanning a region of 12 Mb. Two linkage disequilibrium based methods were used to estimate the time to the most recent common ancestor (TMRCA), while a Bayesian-based procedure was used to estimate the age of the two mutations. Haplotype reconstruction from unphased genotypes of all members of the affected pedigrees indicated that all carriers for each of the two mutations harbored the same haplotypes, indicating common ancestry.
Conclusions/significance: In good agreement with the documentation record and the census, both mutations arose between 2,800-2,900 years ago (y.a.), but their TMRCA was in the range 600-1,290 y.a., pointing to the existence of historical bottlenecks in the region followed by population growth. This demographic scenario finds further support on a Bayesian Coalescent Analysis based on TGM1 haplotypes that allowed estimating the occurrence of a dramatic reduction of effective population size around 900-4,500 y.a. (95% highest posterior density) followed by exponential growth.