Repositorio digital RUNA

    • Español
    • Galego
    • English
  • Español 
    • Español
    • Galego
    • English
  • Login
RUNABibliosaúdeXunta de galicia. Consellería de sanidadeServicio Galego de saúde
  • REPOSITORIO
  • SOBRE NOSOTROS
    • Sobre RUNA
    • Normativa
    • Política Sergas
  • AYUDA
    • Ayuda
    • FAQ
  •   RUNA Principal
  • Publicación científica
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automated semantic annotation of rare disease cases: a case study

Taboada, M.; Rodríguez, H.; Martínez, D.; Pardo Pérez, María; Sobrido Gómez, María Jesús
Thumbnail
Estadísticas
Estadísticas
Ver Estadísticas de uso
Identificadores
Identificadores
URI: http://hdl.handle.net/20.500.11940/6676
PMID: 24903515
DOI: 10.1093/database/bau045
ISSN: 1758-0463
Registro completo
Servicios
Servicios
RISMendeleyLinksolver
Visualización o descarga de ficheros
Visualización o descarga de ficheros
Database (Oxford) . 2014 Jun 4;2014:bau045. doi: 10.1093/database/bau045. (1.766Mb)
Fecha de publicación
2014
Título de revista
Database-The Journal of Biological Databases and Curation
Tipo de contenido
Artigo
MeSH
Automation | Biological Ontologies | Data Mining | Humans | PubMed | Rare Diseases | Semantics
Resumen
MOTIVATION: As the number of clinical reports in the peer-reviewed medical literature keeps growing, there is an increasing need for online search tools to find and analyze publications on patients with similar clinical characteristics. This problem is especially critical and challenging for rare diseases, where publications of large series are scarce. Through an applied example, we illustrate how to automatically identify new relevant cases and semantically annotate the relevant literature about patient case reports to capture the phenotype of a rare disease named cerebrotendinous xanthomatosis. RESULTS: Our results confirm that it is possible to automatically identify new relevant case reports with a high precision and to annotate them with a satisfactory quality (74% F-measure). Automated annotation with an emphasis to entirely describe all phenotypic abnormalities found in a disease may facilitate curation efforts by supplying phenotype retrieval and assessment of their frequency. Availability and Supplementary information: http://www.usc.es/keam/Phenotype Annotation/. Database URL: http://www.usc.es/keam/PhenotypeAnnotation/

Navega

Todo RUNAColeccionesCentrosAutoresTítulosDeCSMeSHCIETipos de contenidosEsta colecciónCentrosAutoresTítulosDeCSMeSHCIETipos de contenidos

Estadísticas

Ver Estadísticas de uso

DE INTERÉS

Sobre Acceso AbiertoDerechos de autor
TwitterRSS
Xunta de Galicia
© Xunta de Galicia. Información mantida e publicada na internet pola Consellería de Sanidade o Servizo Galego de Saúde
Aviso legal | RSS
Galicia