RUNA digital repository

    • Español
    • Galego
    • English
  • English 
    • Español
    • Galego
    • English
  • Login
RUNABibliosaúdeXunta de galicia. Consellería de sanidadeServicio Galego de saúde
  • REPOSITORY
  • ABOUT US
    • About RUNA
    • Normative
    • Sergas Policy
  • HELP
    • Help
    • FAQ
  •   RUNA Home
  • Scientific publication
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automated semantic annotation of rare disease cases: a case study

Taboada, M.; Rodríguez, H.; Martínez, D.; Pardo Pérez, María; Sobrido Gómez, María Jesús
Thumbnail
Statistics
Statistics
View Usage Statistics
Identifiers
Identifiers
URI: http://hdl.handle.net/20.500.11940/6676
PMID: 24903515
DOI: 10.1093/database/bau045
ISSN: 1758-0463
Full record
Services
Services
RISMendeleyLinksolver
Files view or download
Files view or download
Database (Oxford) . 2014 Jun 4;2014:bau045. doi: 10.1093/database/bau045. (1.766Mb)
Date issued
2014
Journal title
Database-The Journal of Biological Databases and Curation
Type of content
Artigo
MeSH
Automation | Biological Ontologies | Data Mining | Humans | PubMed | Rare Diseases | Semantics
Abstract
MOTIVATION: As the number of clinical reports in the peer-reviewed medical literature keeps growing, there is an increasing need for online search tools to find and analyze publications on patients with similar clinical characteristics. This problem is especially critical and challenging for rare diseases, where publications of large series are scarce. Through an applied example, we illustrate how to automatically identify new relevant cases and semantically annotate the relevant literature about patient case reports to capture the phenotype of a rare disease named cerebrotendinous xanthomatosis. RESULTS: Our results confirm that it is possible to automatically identify new relevant case reports with a high precision and to annotate them with a satisfactory quality (74% F-measure). Automated annotation with an emphasis to entirely describe all phenotypic abnormalities found in a disease may facilitate curation efforts by supplying phenotype retrieval and assessment of their frequency. Availability and Supplementary information: http://www.usc.es/keam/Phenotype Annotation/. Database URL: http://www.usc.es/keam/PhenotypeAnnotation/

Browse

All of RUNACollectionsCentersAuthorsTitlesDeCSMeSHCIETypes of contentThis CollectionCentersAuthorsTitlesDeCSMeSHCIETypes of content

Statistics

View Usage Statistics

OF INTEREST

About Open AccessCopyright
TwitterRSS
Xunta de Galicia
© Xunta de Galicia. Información mantida e publicada na internet pola Consellería de Sanidade o Servizo Galego de Saúde
Legal warning | RSS
Galicia