Mostrar el registro sencillo del ítem

dc.contributor.authorARCEO VILAS, ALBA MARIA 
dc.contributor.authorFernandez Lozano, Carlos
dc.contributor.authorPita Fernandez, Salvador 
dc.contributor.authorPertega Diaz, Sonia 
dc.contributor.authorPAZOS SIERRA, ALEJANDRO
dc.date.accessioned2022-04-12T11:36:53Z
dc.date.available2022-04-12T11:36:53Z
dc.date.issued2020
dc.identifier.issn2376-5992
dc.identifier.otherhttps://www.ncbi.nlm.nih.gov/pubmed/33816938es
dc.identifier.urihttp://hdl.handle.net/20.500.11940/16444
dc.description.abstractFood consumption patterns have undergone changes that in recent years have resulted in serious health problems. Studies based on the evaluation of the nutritional status have determined that the adoption of a food pattern-based primarily on a Mediterranean diet (MD) has a preventive role, as well as the ability to mitigate the negative effects of certain pathologies. A group of more than 500 adults aged over 40 years from our cohort in Northwestern Spain was surveyed. Under our experimental design, 10 experiments were run with four different machine-learning algorithms and the predictive factors most relevant to the adherence of a MD were identified. A feature selection approach was explored and under a null hypothesis test, it was concluded that only 16 measures were of relevance, suggesting the strength of this observational study. Our findings indicate that the following factors have the highest predictive value in terms of the degree of adherence to the MD: basal metabolic rate, mini nutritional assessment questionnaire total score, weight, height, bone density, waist-hip ratio, smoking habits, age, EDI-OD, circumference of the arm, activity metabolism, subscapular skinfold, subscapular circumference in cm, circumference of the waist, circumference of the calf and brachial area.en
dc.rightsAtribución 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.meshNutritional Status*
dc.subject.meshSupport Vector Machines*
dc.subject.meshNutrition Disorders*
dc.titleIdentification of predictive factors of the degree of adherence to the Mediterranean diet through machine-learning techniquesen
dc.typeJournal Articlees
dc.authorsophosArceo-Vilas, A Fernandez-Lozano, C Pita, S Pertega-Diaz, S Pazos, A
dc.identifier.doi10.7717/peerj-cs.287
dc.identifier.pmid33816938
dc.identifier.sophos38627
dc.journal.titlePeerJ Computer sciencees
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::Instituto de Investigación Biomédica da Coruña (INIBIC)es
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::EOXI de A Coruña - Complexo Hospitalario Universitario de A Coruña::Epidemioloxíaes
dc.rights.accessRightsopenAccess
dc.subject.decsmáquinas de vectores de apoyo*
dc.subject.decstrastornos nutricionales*
dc.subject.decsestado nutricional*
dc.subject.keywordINIBICes
dc.subject.keywordCHUACes
dc.typefidesArtículo Originales
dc.typesophosArtículo Originales
dc.volume.number6.es


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional