O repositorio dixital RUNA

    • Español
    • Galego
    • English
  • Galego 
    • Español
    • Galego
    • English
  • Login
RUNABibliosaúdeXunta de galicia. Consellería de sanidadeServicio Galego de saúde
  • REPOSITORIO
  • SOBRE NÓS
    • Sobre RUNA
    • Normativa
    • Política Sergas
  • AXUDA
    • Axuda
    • FAQ
  •   RUNA Principal
  • Publicación científica
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhanced localization of genetic samples through linkage-disequilibrium correction

Baran, Y.; Quintela García, Inés; Carracedo Álvarez, Ángel; Pasaniuc, B.; Halperin, E.
Thumbnail
Estatísticas
Estatísticas
Ver Estatísticas de uso
Identificadores
Identificadores
URI: http://hdl.handle.net/20.500.11940/2432
PMID: 23726367
DOI: 10.1016/j.ajhg.2013.04.023
ISSN: 0002-9297
Rexistro completo
Servizos
Servizos
RISMendeleyLinksolver
Visualización ou descarga de ficheiros
Visualización ou descarga de ficheiros
Am J Hum Genet . 2013 Jun 6;92(6):882-94. (741.5Kb)
Data de publicación
2013
Título da revista
AMERICAN JOURNAL OF HUMAN GENETICS
Tipo de contido
Artigo
MeSH
Algorithms | Genetic Markers | Genetics, Population | Genome, Human | Humans | Linkage Disequilibrium | Models, Genetic | Phylogeography | Polymorphism, Single Nucleotide | Principal Component Analysis | Software | Spain
Resumo
Characterizing the spatial patterns of genetic diversity in human populations has a wide range of applications, from detecting genetic mutations associated with disease to inferring human history. Current approaches, including the widely used principal-component analysis, are not suited for the analysis of linked markers, and local and long-range linkage disequilibrium (LD) can dramatically reduce the accuracy of spatial localization when unaccounted for. To overcome this, we have introduced an approach that performs spatial localization of individuals on the basis of their genetic data and explicitly models LD among markers by using a multivariate normal distribution. By leveraging external reference panels, we derive closed-form solutions to the optimization procedure to achieve a computationally efficient method that can handle large data sets. We validate the method on empirical data from a large sample of European individuals from the POPRES data set, as well as on a large sample of individuals of Spanish ancestry. First, we show that by modeling LD, we achieve accuracy superior to that of existing methods. Importantly, whereas other methods show decreased performance when dense marker panels are used in the inference, our approach improves in accuracy as more markers become available. Second, we show that accurate localization of genetic data can be achieved with only a part of the genome, and this could potentially enable the spatial localization of admixed samples that have a fraction of their genome originating from a given continent. Finally, we demonstrate that our approach is resistant to distortions resulting from long-range LD regions; such distortions can dramatically bias the results when unaccounted for.

Navega

Todo RUNAColecciónsCentrosAutoresTítulosDeCSMeSHCIETipo de contidoEsta colecciónCentrosAutoresTítulosDeCSMeSHCIETipo de contido

Estatísticas

Ver Estatísticas de uso

DE INTERESE

Sobre Acceso AbertoDereitos de autor
TwitterRSS
Xunta de Galicia
© Xunta de Galicia. Información mantida e publicada na internet pola Consellería de Sanidade o Servizo Galego de Saúde
Aviso legal | RSS
Galicia